Sonntag, Juli 31, 2022
StartMicrobiologyA novel strategy to regulate Botrytis cinerea fungal infections: uptake and organic...

A novel strategy to regulate Botrytis cinerea fungal infections: uptake and organic exercise of antifungals encapsulated in nanoparticle primarily based vectors


  • Cheung, N., Tian, L., Liu, X. & Li, X. The damaging fungal pathogen Botrytis cinerea—Insights from genes studied with mutant evaluation. Pathogens. 9, 923 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Williamson, B., Tudzynski, B., Tudzynski, P. & Van Kan, J. A. L. Botrytis cinerea: The reason for gray mould illness. Mol. Plant Pathol. 8, 561–580 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Weiberg, A. et al. Fungal small RNAs suppress plant immunity by hijacking Host RNA interference pathways. Science 342, 118–123 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Dean, R. et al. The High 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430 (2012).

    Article 

    Google Scholar
     

  • Liang, Y. et al. Growth of novel urease-responsive pendimethalin microcapsules utilizing silica-IPTS-PEI as managed launch provider supplies. ACS Maintain. Chem. Eng. 5, 4802–4810 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Droby, S., Wisniewski, M., Macarisin, D. & Wilson, C. Twenty years of postharvest biocontrol analysis: Is it time for a brand new paradigm? Postharvest Biol. Technol. 52, 137–145 (2009).

    Article 

    Google Scholar
     

  • Simonetti, G. et al. Prenylated flavonoids and complete extracts from Morus nigra L. root bark inhibit in vitro progress of plant pathogenic fungi. Plant Biosyst. 151, 783–787 (2017).

    Article 

    Google Scholar
     

  • Usman, M. et al. Nanotechnology in agriculture: Present standing, challenges and future alternatives. Sci. Whole Environ. 721, 137778 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Malinovskaya, Y. et al. Supply of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. Int. J. Pharm. 524, 77–90 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Sharma, A., Sood, Okay., Kaur, J. & Khatri, M. Agrochemical loaded biocompatible chitosan nanoparticles for insect pest administration. Biocatal. Agric. Biotechnol. 18, 101079 (2019).

    Article 

    Google Scholar
     

  • Saallah, S. & Lenggoro, I. W. Nanoparticles carrying organic molecules: Current advances and functions. KONA Powder Half. J. 35, 89–111 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Patel, N. R., Damann, Okay., Leonardi, C. & Sabliov, C. M. Measurement dependency of PLGA-nanoparticle uptake and antifungal exercise in opposition to Aspergillus flavus. Nanomedicine 6, 1381–1395 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Chronopoulou, L. et al. Microfluidic synthesis of methyl jasmonate-loaded PLGA nanocarriers as a brand new technique to enhance pure defenses in Vitis vinifera. Sci. Rep. 9, 1–9 (2019).

    Article 

    Google Scholar
     

  • Fukamachi, Okay., Konishi, Y. & Nomura, T. Illness management of Phytophthora infestans utilizing cyazofamid encapsulated in poly lactic-co-glycolic acid (PLGA) nanoparticles. Colloids Surf. A: Physicochem. Eng. Asp. 577, 315–322 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Simonetti, G. et al. Anti-Candida biofilm exercise of pterostilbene or crude extract from non-fermented grape pomace entrapped in biopolymeric nanoparticles. Molecules 24, 2070 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Valletta, A. et al. Poly (lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi. J. Nanoparticle Res. 16, 2744 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Palocci, C. et al. Endocytic pathways concerned in PLGA nanoparticle uptake by grapevine cells and position of cell wall and membrane in dimension choice. Plant Cell Rep. 36, 1917–1928 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Liu, J. et al. Fungal range in discipline mold-damaged soybean fruits and pathogenicity identification primarily based on high-throughput rDNA sequencing. Entrance. Microbiol. 8, 779 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Almeida, F., Rodrigues, M. L. & Coelho, C. The nonetheless underestimated downside of fungal illnesses worldwide. Entrance. Microbiol. 10, 214 (2019).

    Article 

    Google Scholar
     

  • Medrano-Padial, C., Prieto, A. I., Puerto, M. & Pichardo, S. Toxicological analysis of piceatannol, pterostilbene, and ε-viniferin for his or her potential use within the meals business: A evaluate. Meals. 10, 592 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Xu, D. et al. In vitro and in vivo effectiveness of phenolic compounds for the management of postharvest grey mould of desk grapes. Postharvest Biol. Technol. 139, 106–114 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Schmidlin, L. et al. A stress-inducible resveratrol O-methyltransferase concerned within the biosynthesis of pterostilbene in grapevine. Plant Physiol. 148, 1630–1639 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Bramosanti, M., Chronopoulou, L., Grillo, F., Valletta, A. & Palocci, C. Microfluidic-assisted nanoprecipitation of antiviral-loaded polymeric nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 532, 369–376 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Chronopoulou, L., Sparago, C. & Palocci, C. A modular microfluidic platform for the synthesis of biopolymeric nanoparticles entrapping natural actives. J. Nanopart. Res. 16, 2703–2713 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Provencher, S. W. CONTIN: A basic objective constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 27, 229–242 (1982).

    ADS 
    Article 

    Google Scholar
     

  • Lorenzini, M. & Zapparoli, G. An isolate morphologically and phylogenetically distinct from Botrytis cinerea obtained from withered grapes probably represents a brand new species of Botrytis. Plant Pathol. 63, 1326–1335 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Patzke, H. & Schieber, A. Progress-inhibitory exercise of phenolic compounds utilized in an emulsifiable concentrate-ferulic acid as a pure pesticide in opposition to Botrytis cinerea. Int. Meals Res. J. 113, 18–23 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Meletiadis, J. et al. EUROFUNG Community. Colorimetric assay for antifungal susceptibility testing of Aspergillus species. J. Clin. Microbiol. 39, 3402–3408 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Hawker, L. E. & Hendy, R. J. An electron-microscope examine of germination of conidia of Botrytis cinerea. Microbiology 33, 43–46 (1963).

    CAS 

    Google Scholar
     

  • Muse, E. S., Patel, N. R., Astete, C. E., Damann, Okay. E. & Sabliov, C. M. Floor affiliation and uptake of poly (lactic-co-glycolic) acid nanoparticles by Aspergillus flavus. Ther. Deliv. 5, 1179–1190 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Raj, V., Raorane, C. J., Lee, J. H. & Lee, J. Appraisal of chitosan-gum arabic-coated bipolymeric nanocarriers for environment friendly dye elimination and eradication of the plant pathogen Botrytis cinerea. ACS Appl. Mater. Interfaces. 13, 47354–47370 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Pezet, R. & Pont, V. Ultrastructural observations of pterostilbene fungitoxicity in dormant conidia of Botrytis cinerea Pers. J. Phytopathol. 129, 19–30 (1990).

    CAS 
    Article 

    Google Scholar
     

  • Xu, D. et al. Efficacy of pterostilbene suppression of postharvest grey mould in desk grapes and potential mechanisms. Postharvest Biol. Technol. 183, 111745 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Favaron, F., Lucchetta, M., Odorizzi, S., da Cunha, A. T. P. & Sella, L. The position of grape polyphenols on tran-resveratrol exercise in opposition to Botrytis cinerea and fungal laccase on the solubility of putative grape PR proteins. J. Plant Pathol. 91, 579–588 (2009).

    CAS 

    Google Scholar
     

  • Amiri, A., Heath, S. M. & Peres, N. A. Resistance to fluopyram, fluxapyroxad, and penthiopyrad in Botrytis cinerea from strawberry. Plant Dis. 98, 532–539 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Dong, B. & Hu, J. Photodegradation of the novel fungicide fluopyram in aqueous answer: Kinetics, transformation merchandise, and toxicity evolvement. Environ. Sci. Pollut. Res. 23, 19096–19106 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, J. et al. Research on environmental behaviour of fluopyram in several banana planting soil. Sci. Rep. 11, 1–10 (2021).

    Article 

    Google Scholar
     

  • Anandhi, S., Saminathan, V. R., Yasotha, P., Saravanan, P. T. & Rajanbabu, V. Nano-pesticides in pest administration. J. Entomol. Zool. Stud. 8, 685–690 (2020).


    Google Scholar
     

  • Du, W., Gao, Y., Liu, L., Sai, S. & Ding, C. Placing again in opposition to fungal infections: The utilization of nanosystems for antifungal methods. Int. J. Mol. Sci. 22, 10104 (2021).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments