Sonntag, Juli 31, 2022
StartMicrobiologyAdaptation of intestine microbiome and host metabolic methods to lignocellulosic degradation in...

Adaptation of intestine microbiome and host metabolic methods to lignocellulosic degradation in bamboo rats


  • Leadbeater DR, Oates NC, Bennett JP, Li Y, Dowle AA, Taylor JD, et al. Mechanistic methods of microbial communities regulating lignocellulose deconstruction in a UK salt marsh. Microbiome 2021;9:48.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, Wu Q, Ma S, Ma T, Shan L, Wang X, et al. Comparative genomics reveals convergent evolution between the bamboo-eating big and pink pandas. Proc Natl Acad Sci USA. 2017;114:1081–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Q, Wang X, Ding Y, Hu Y, Nie Y, Wei W, et al. Seasonal variation in nutrient utilization shapes intestine microbiome construction and performance in wild big pandas. Proc Biol Sci. 2017;284:20170955.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC, Cookson AL, et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Assortment. Nat Biotechnol. 2018;36:359–67.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of advanced carbohydrates within the intestine. Intestine Microbes. 2012;3:289–306.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bredon M, Dittmer J, Noël C, Moumen B, Bouchon D. Lignocellulose degradation on the holobiont stage: teamwork in a keystone soil invertebrate. Microbiome 2018;6:162.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozbayram EG, Kleinsteuber S, Nikolausz M. Biotechnological utilization of animal intestine microbiota for valorization of lignocellulosic biomass. Appl Microbiol Biotechnol. 2020;104:489–508.

    CAS 
    PubMed 

    Google Scholar
     

  • Wei F, Hu Y, Yan L, Nie Y, Wu Q, Zhang Z. Big pandas usually are not an evolutionary cul-de-sac: proof from multidisciplinary analysis. Mol Biol Evol. 2015;32:4–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu L, Yang Z, Yao R, Xu L, Chen H, Gu X, et al. Potential mechanism of detoxing of cyanide compounds by intestine microbiomes of bamboo-eating pandas. mSphere 2018;3:e00229–18.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo W, Chen Y, Wang C, Ning R, Zeng B, Tang J, et al. The carnivorous digestive system and bamboo weight-reduction plan of big pandas might form their low intestine bacterial variety. Conserv Physiol. 2020;8:coz104.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie Y, Wei F, Zhou W, Hu Y, Senior AM, Wu Q, et al. Big pandas are macronutritional carnivores. Curr Biol. 2019;29:1677–1682.e2.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang S, Gao X, Meng J, Zhang A, Zhou Y, Lengthy M, et al. Metagenomic evaluation of micro organism, fungi, bacteriophages, and helminths within the intestine of big pandas. Entrance Microbiol. 2018;9:1717.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin L, Huang Y, Yang S, Wu D, Li C, Deng W, et al. Weight-reduction plan, habitat surroundings and life-style conversion have an effect on the intestine microbiomes of big pandas. Sci Complete Environ. 2021;770:145316.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu L, Wu Q, Dai J, Zhang S, Wei F. Proof of cellulose metabolism by the enormous panda intestine microbiome. Proc Natl Acad Sci USA. 2011;108:17714–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu D, Lu L, Zhang Z, Qi D, Zhang M, O’Connor P, et al. Insights into the roles of fungi and protist within the big panda intestine microbiome and antibiotic resistome. Environ Int. 2021;155:106703.

    CAS 
    PubMed 

    Google Scholar
     

  • Guo M, Chen J, Li Q, Fu Y, Fan G, Ma J, et al. Dynamics of intestine microbiome in big panda cubs reveal transitional microbes and pathways in formative years. Entrance Microbiol. 2018;9:3138.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang W, Liu W, Hou R, Zhang L, Schmitz-Esser S, Solar H, et al. Age-associated microbiome exhibits the enormous panda lives on hemicelluloses, not on cellulose. ISME J. 2018;12:1319–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang G, Wang X, Hu Y, Wu Q, Nie Y, Dong J, et al. Weight-reduction plan drives convergent evolution of intestine microbiomes in bamboo-eating species. Sci China Life Sci. 2021;64:88–95.

    PubMed 

    Google Scholar
     

  • Xue Z, Zhang W, Wang L, Hou R, Zhang M, Fei L, et al. The bamboo-eating big panda harbors a carnivore-like intestine microbiota, with extreme seasonal differences. mBio 2015;6:e00022–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo W, Mishra S, Wang C, Zhang H, Ning R, Kong F, et al. Comparative examine of intestine microbiota in wild and captive big pandas (Ailuropoda melanoleuca). Genes 2019;10:827.

    CAS 
    PubMed Central 

    Google Scholar
     

  • Yao R, Xu L, Hu T, Chen H, Qi D, Gu X, et al. The “wildness” of the enormous panda intestine microbiome and its relevance to efficient translocation. Glob Ecol Conserv. 2019;18:e00644.


    Google Scholar
     

  • Attigani A, Solar L, Wang Q, Liu Y, Bai D, Li S, et al. The crystal construction of the endoglucanase Cel10, a household 8 glycosyl hydrolase from Klebsiella pneumoniae. Acta Crystallogr F Struct Biol Commun. 2016;72:870–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai D-P, Lin X-Y, Hu Y-Q, Chen Z-Z, Chen L, Huang Y-F, et al. Metagenomics method to establish lignocellulose-degrading enzymes within the intestine microbiota of the Chinese language bamboo rat cecum. Elect J Biotech. 2021;50:29–36.

    CAS 

    Google Scholar
     

  • Nearing JT, Comeau AM, Langille MGI. Figuring out biases and their potential options in human microbiome research. Microbiome 2021;9:113.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazuka A, Auer L, O’Donohue M, Hernandez-Raquet G. Anaerobic lignocellulolytic microbial consortium derived from termite intestine: enrichment, lignocellulose degradation and neighborhood dynamics. Biotechnol Biofuels. 2018;11:284.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rowland I, Gibson G, Heinken A, Scott Ok, Swann J, Thiele I, et al. Intestine microbiota features: metabolism of vitamins and different meals parts. Eur J Nutr. 2018;57:1–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Mars RAT, Yang Y, Ward T, Houtti M, Priya S, Lekatz HR, et al. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell 2020;182:1460–1473.e17.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou W, Sailani MR, Contrepois Ok, Zhou Y, Ahadi S, Leopold SR, et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature 2019;569:663–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faucet J, Furet JP, Bensaada M, Philippe C, Roth H, Rabot S, et al. Intestine microbiota richness promotes its stability upon elevated dietary fibre consumption in wholesome adults. Environ Microbiol. 2015;17:4954–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Guo J, Ji Ok, Zhang P. Bamboo shoot fiber prevents weight problems in mice by modulating the intestine microbiota. Sci Rep. 2016;6:32953.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Tsai T, Deng F, Wei X, Chai J, Knapp J, et al. Longitudinal investigation of the swine intestine microbiome from delivery to market reveals stage and development efficiency related micro organism. Microbiome 2019;7:109.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Xu Q, Kong F, Yang Y, Wu D, Mishra S, et al. Exploring the goat rumen microbiome from seven days to 2 years. PLoS ONE. 2016;11:e0154354.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilmanski T, Rappaport N, Earls JC, Magis AT, Manor O, Lovejoy J, et al. Blood metabolome predicts intestine microbiome α-diversity in people. Nat Biotechnol. 2019;37:1217–28.

    CAS 
    PubMed 

    Google Scholar
     

  • Consortium THMP. Construction, perform and variety of the wholesome human microbiome. Nature 2012;486:207–14.


    Google Scholar
     

  • Xie F, Jin W, Si H, Yuan Y, Tao Y, Liu J, et al. An built-in gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome 2021;9:137.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lagkouvardos I, Lesker TR, Hitch TCA, Galvez EJC, Smit N, Neuhaus Ok, et al. Sequence and cultivation examine of Muribaculaceae reveals novel species, host choice, and purposeful potential of this but undescribed household. Microbiome 2019;7:28.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, et al. The mouse intestinal bacterial assortment (miBC) offers host-specific perception into cultured variety and purposeful potential of the intestine microbiota. Nat Microbiol. 2016;1:16131.

    CAS 
    PubMed 

    Google Scholar
     

  • Gharechahi J, Vahidi MF, Bahram M, Han JL, Ding XZ, Salekdeh GH. Metagenomic evaluation reveals a dynamic microbiome with diversified adaptive features to make the most of excessive lignocellulosic forages within the cattle rumen. ISME J. 2021;15:1108–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Calusinska M, Marynowska M, Bertucci M, Untereiner B, Klimek D, Goux X, et al. Integrative omics evaluation of the termite intestine system adaptation to Miscanthus weight-reduction plan identifies lignocellulose degradation enzymes. Commun Biol. 2020;3:275.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrer M, Ruiz A, Lanza F, Haange SB, Oberbach A, Until H, et al. Microbiota from the distal guts of lean and overweight adolescents exhibit partial purposeful redundancy moreover clear variations in neighborhood construction. Environ Microbiol. 2013;15:211–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Uebanso T, Shimohata T, Mawatari Ok, Takahashi A. Useful roles of B-Nutritional vitamins within the intestine and intestine microbiome. Mol Nutr Meals Res. 2020;64:e2000426.

    PubMed 

    Google Scholar
     

  • Singhal P, Bal LM, Satya S, Sudhakar P, Naik SN. Bamboo shoots: a novel supply of vitamin and drugs. Crit Rev Meals Sci Nutr. 2013;53:517–34.

    PubMed 

    Google Scholar
     

  • Grizotte-Lake M, Zhong G, Duncan Ok, Kirkwood J, Iyer N, Smolenski I, et al. Commensals suppress intestinal epithelial cell retinoic acid synthesis to control interleukin-22 exercise and stop microbial dysbiosis. Immunity 2018;49:1103–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salsinha AS, Pimentel LL, Fontes AL, Gomes AM, Rodríguez-Alcalá LM. Microbial manufacturing of conjugated linoleic acid and conjugated linolenic acid depends on a multienzymatic system. Microbiol Mol Biol Rev. 2018;82:e00019–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Shea EF, Cotter PD, Stanton C, Ross RP, Hill C. Manufacturing of bioactive substances by intestinal micro organism as a foundation for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int J Meals Microbiol. 2012;152:189–205.

    CAS 
    PubMed 

    Google Scholar
     

  • Fatima I, Akhtar W, Bangash NK, Kanwal S, Rauf N, Malik TSS, et al. Risky profiling, elemental composition and organic actions of aerial elements of seven Poaceae species. Plant Biosyst. 2021; https://doi.org/10.1080/11263504.2021.1952330.

  • Gagliano J, Anselmo-Moreira F, Sala-Carvalho WR, Furlan CM. What is understood in regards to the medicinal potential of bamboo? Adv Tradit Med. 2021; https://doi.org/10.1007/s13596-020-00536-5.

  • Yang S, Huang Y, Li C, Jin L, Deng W, Zhao S, et al. The fecal and serum metabolomics of big pandas based mostly on untargeted metabolomics. Zool Sci. 2021;38:179–86.


    Google Scholar
     

  • Miyamoto J, Igarashi M, Watanabe Ok, Karaki SI, Mukouyama H, Kishino S, et al. Intestine microbiota confers host resistance to weight problems by metabolizing dietary polyunsaturated fatty acids. Nat Commun. 2019;10:4007.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiong W, Yong T, Yongfang S, Xuguo C, Weiming L. Meat productiveness, dietary compositions and analysis of muscular tissues of hoary bamboo rat. Chin J Wildl. 2019;40:917–23.


    Google Scholar
     

  • Levan SR, Stamnes KA, Lin DL, Panzer AR, Fukui E, McCauley Ok, et al. Elevated faecal 12,13-diHOME focus in neonates at excessive threat for bronchial asthma is produced by intestine micro organism and impedes immune tolerance. Nat Microbiol. 2019;4:1851–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynes MD, Leiria LO, Lundh M, Bartelt A, Shamsi F, Huang TL, et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med. 2017;23:631–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Intestine microbiome and serum metabolome alterations in weight problems and after weight-loss intervention. Nat Med. 2017;23:859–68.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu J, Yang D, Gong H, Qi Y, Solar H, Liu Y, et al. A number of omics evaluation reveals that top fiber diets promote gluconeogenesis and inhibit glycolysis in muscle. BMC Genomics. 2020;21:660.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • den Besten G, van Eunen Ok, Groen AK, Venema Ok, Reijngoud DJ, Bakker BM. The position of short-chain fatty acids within the interaction between weight-reduction plan, intestine microbiota, and host power metabolism. J Lipid Res. 2013;54:2325–40.


    Google Scholar
     

  • van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids. Tendencies Microbiol. 2021:29:700–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Yao R, Yang Z, Zhang Z, Hu T, Chen H, Huang F, et al. Are the intestine microbial methods of big pandas unstable? Heliyon 2019;5:e02480.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu C, Laghi L, Zhang Z, He Y, Wu D, Zhang H, et al. First steps towards the enormous panda metabolome database: untargeted metabolomics of feces, urine, serum, and saliva by (1)H NMR. J Proteome Res. 2020;19:1052–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.


    Google Scholar
     

  • Edgar RC. Search and clustering orders of magnitude sooner than BLAST. Bioinformatics 2010;26:2460–1.

    CAS 
    PubMed 

    Google Scholar
     

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger Ok, Bushman FD, Costello EK, et al. QIIME permits evaluation of high-throughput neighborhood sequencing information. Nat Strategies. 2010;7:335–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, et al. Multivariable affiliation discovery in population-scale meta-omics research. PLoS Comput Biol. 2021;17:e1009442.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and rationalization. Genome Biol. 2011;12:R60.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ju F, Xia Y, Guo F, Wang Z, Zhang T. Taxonomic relatedness shapes bacterial meeting in activated sludge of worldwide distributed wastewater remedy crops. Environ Microbiol. 2014;16:2421–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Csardi G, Nepusz T. The igraph software program package deal for advanced community analysis. Inter J Comp Syst. 2006;1695:1–9.


    Google Scholar
     

  • Dixon P. VEGAN, a package deal of R features for neighborhood ecology. J Veg Sci. 2003;14:927–30.


    Google Scholar
     

  • Bastian M, Heymann S, Jacomy M. Gephi: an open supply software program for exploring and manipulating networks. ICWSM. 2009;3:361–2.


    Google Scholar
     

  • Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:i884–i890.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq utilizing the Trinity platform for reference technology and evaluation. Nat Protoc. 2013;8:1494–512.

    CAS 
    PubMed 

    Google Scholar
     

  • Langmead B, Salzberg SL. Quick gapped-read alignment with Bowtie 2. Nat Strategies. 2012;9:357–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davidson NM, Oshlack A. Corset: enabling differential gene expression evaluation for de novo assembled transcriptomes. Genome Biol. 2014;15:410.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, et al. Genome-wide midrange transcription profiles reveal expression stage relationships in human tissue specification. Bioinformatics 2005;21:650–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO functions from high quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2018;35:543–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Bryant DM, Johnson Ok, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, et al. A tissue-mapped axolotl de novo transcriptome allows identification of limb regeneration elements. Cell Rep. 2017;18:762–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 2014;15:550.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Durbin R. Quick and correct brief learn alignment with Burrows-Wheeler rework. Bioinformatics 2009;25:1754–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li D, Liu CM, Luo R, Sadakane Ok, Lam TW. MEGAHIT: an ultra-fast single-node resolution for big and complicated metagenomics meeting through succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing information. Bioinformatics 2012;28:3150–2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerlach W, Stoye J. Taxonomic classification of metagenomic shotgun sequences with CARMA3. Nucleic Acids Res. 2011;39:e91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang P, Zhang Y, Xiao Ok, Jiang F, Wang H, Tang D, et al. The hen intestine metagenome and the modulatory results of plant-derived benzylisoquinoline alkaloids. Microbiome 2018;6:211.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular information units. Nucleic Acids Res. 2012;40:D109–D114.

    CAS 
    PubMed 

    Google Scholar
     

  • Huerta-Cepas J, Szklarczyk D, Forslund Ok, Cook dinner H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved purposeful annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–D293.

    CAS 
    PubMed 

    Google Scholar
     

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495.

    CAS 
    PubMed 

    Google Scholar
     

  • Ma S, Jiang F, Huang Y, Zhang Y, Wang S, Fan H, et al. A microbial gene catalog of anaerobic digestion from full-scale biogas crops. Gigascience 2021;10:giaa164.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Xia J, Jiang L, Tan Y, An Y, Zhu X, et al. Characterization of the human pores and skin resistome and identification of two microbiota cutotypes. Microbiome 2021;9:47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide affiliation examine of intestine microbiota in sort 2 diabetes. Nature 2012;490:55–6.

    CAS 
    PubMed 

    Google Scholar
     

  • McMurdie PJ, Holmes S. phyloseq: an R package deal for reproducible interactive evaluation and graphics of microbiome census information. PLoS ONE. 2013;8:e61217.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: in direction of extra clear and integrative metabolomics evaluation. Nucleic Acids Res. 2018;46:W486–W494.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar HZ, Zhou M, Wang O, Chen Y, Liu JX, Guan LL. Multi-omics reveals purposeful genomic and metabolic mechanisms of milk manufacturing and high quality in dairy cows. Bioinformatics 2020;36:2530–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Lloyd-Worth J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the intestine microbial ecosystem in inflammatory bowel illnesses. Nature 2019;569:655–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohart F, Gautier B, Singh A. KA LC. mixOmics: an R package deal for ‚omics characteristic choice and a number of information integration. PLoS Comput Biol. 2017;13:e1005752.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software program surroundings for built-in fashions of biomolecular interplay networks. Genome Res. 2003;13:2498–504.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments