Leadbeater DR, Oates NC, Bennett JP, Li Y, Dowle AA, Taylor JD, et al. Mechanistic methods of microbial communities regulating lignocellulose deconstruction in a UK salt marsh. Microbiome 2021;9:48.
Hu Y, Wu Q, Ma S, Ma T, Shan L, Wang X, et al. Comparative genomics reveals convergent evolution between the bamboo-eating big and pink pandas. Proc Natl Acad Sci USA. 2017;114:1081–6.
Wu Q, Wang X, Ding Y, Hu Y, Nie Y, Wei W, et al. Seasonal variation in nutrient utilization shapes intestine microbiome construction and performance in wild big pandas. Proc Biol Sci. 2017;284:20170955.
Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC, Cookson AL, et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Assortment. Nat Biotechnol. 2018;36:359–67.
Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of advanced carbohydrates within the intestine. Intestine Microbes. 2012;3:289–306.
Bredon M, Dittmer J, Noël C, Moumen B, Bouchon D. Lignocellulose degradation on the holobiont stage: teamwork in a keystone soil invertebrate. Microbiome 2018;6:162.
Ozbayram EG, Kleinsteuber S, Nikolausz M. Biotechnological utilization of animal intestine microbiota for valorization of lignocellulosic biomass. Appl Microbiol Biotechnol. 2020;104:489–508.
Wei F, Hu Y, Yan L, Nie Y, Wu Q, Zhang Z. Big pandas usually are not an evolutionary cul-de-sac: proof from multidisciplinary analysis. Mol Biol Evol. 2015;32:4–12.
Zhu L, Yang Z, Yao R, Xu L, Chen H, Gu X, et al. Potential mechanism of detoxing of cyanide compounds by intestine microbiomes of bamboo-eating pandas. mSphere 2018;3:e00229–18.
Guo W, Chen Y, Wang C, Ning R, Zeng B, Tang J, et al. The carnivorous digestive system and bamboo weight-reduction plan of big pandas might form their low intestine bacterial variety. Conserv Physiol. 2020;8:coz104.
Nie Y, Wei F, Zhou W, Hu Y, Senior AM, Wu Q, et al. Big pandas are macronutritional carnivores. Curr Biol. 2019;29:1677–1682.e2.
Yang S, Gao X, Meng J, Zhang A, Zhou Y, Lengthy M, et al. Metagenomic evaluation of micro organism, fungi, bacteriophages, and helminths within the intestine of big pandas. Entrance Microbiol. 2018;9:1717.
Jin L, Huang Y, Yang S, Wu D, Li C, Deng W, et al. Weight-reduction plan, habitat surroundings and life-style conversion have an effect on the intestine microbiomes of big pandas. Sci Complete Environ. 2021;770:145316.
Zhu L, Wu Q, Dai J, Zhang S, Wei F. Proof of cellulose metabolism by the enormous panda intestine microbiome. Proc Natl Acad Sci USA. 2011;108:17714–9.
Zhu D, Lu L, Zhang Z, Qi D, Zhang M, O’Connor P, et al. Insights into the roles of fungi and protist within the big panda intestine microbiome and antibiotic resistome. Environ Int. 2021;155:106703.
Guo M, Chen J, Li Q, Fu Y, Fan G, Ma J, et al. Dynamics of intestine microbiome in big panda cubs reveal transitional microbes and pathways in formative years. Entrance Microbiol. 2018;9:3138.
Zhang W, Liu W, Hou R, Zhang L, Schmitz-Esser S, Solar H, et al. Age-associated microbiome exhibits the enormous panda lives on hemicelluloses, not on cellulose. ISME J. 2018;12:1319–28.
Huang G, Wang X, Hu Y, Wu Q, Nie Y, Dong J, et al. Weight-reduction plan drives convergent evolution of intestine microbiomes in bamboo-eating species. Sci China Life Sci. 2021;64:88–95.
Xue Z, Zhang W, Wang L, Hou R, Zhang M, Fei L, et al. The bamboo-eating big panda harbors a carnivore-like intestine microbiota, with extreme seasonal differences. mBio 2015;6:e00022–15.
Guo W, Mishra S, Wang C, Zhang H, Ning R, Kong F, et al. Comparative examine of intestine microbiota in wild and captive big pandas (Ailuropoda melanoleuca). Genes 2019;10:827.
Yao R, Xu L, Hu T, Chen H, Qi D, Gu X, et al. The “wildness” of the enormous panda intestine microbiome and its relevance to efficient translocation. Glob Ecol Conserv. 2019;18:e00644.
Attigani A, Solar L, Wang Q, Liu Y, Bai D, Li S, et al. The crystal construction of the endoglucanase Cel10, a household 8 glycosyl hydrolase from Klebsiella pneumoniae. Acta Crystallogr F Struct Biol Commun. 2016;72:870–6.
Bai D-P, Lin X-Y, Hu Y-Q, Chen Z-Z, Chen L, Huang Y-F, et al. Metagenomics method to establish lignocellulose-degrading enzymes within the intestine microbiota of the Chinese language bamboo rat cecum. Elect J Biotech. 2021;50:29–36.
Nearing JT, Comeau AM, Langille MGI. Figuring out biases and their potential options in human microbiome research. Microbiome 2021;9:113.
Lazuka A, Auer L, O’Donohue M, Hernandez-Raquet G. Anaerobic lignocellulolytic microbial consortium derived from termite intestine: enrichment, lignocellulose degradation and neighborhood dynamics. Biotechnol Biofuels. 2018;11:284.
Rowland I, Gibson G, Heinken A, Scott Ok, Swann J, Thiele I, et al. Intestine microbiota features: metabolism of vitamins and different meals parts. Eur J Nutr. 2018;57:1–24.
Mars RAT, Yang Y, Ward T, Houtti M, Priya S, Lekatz HR, et al. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell 2020;182:1460–1473.e17.
Zhou W, Sailani MR, Contrepois Ok, Zhou Y, Ahadi S, Leopold SR, et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature 2019;569:663–71.
Faucet J, Furet JP, Bensaada M, Philippe C, Roth H, Rabot S, et al. Intestine microbiota richness promotes its stability upon elevated dietary fibre consumption in wholesome adults. Environ Microbiol. 2015;17:4954–64.
Li X, Guo J, Ji Ok, Zhang P. Bamboo shoot fiber prevents weight problems in mice by modulating the intestine microbiota. Sci Rep. 2016;6:32953.
Wang X, Tsai T, Deng F, Wei X, Chai J, Knapp J, et al. Longitudinal investigation of the swine intestine microbiome from delivery to market reveals stage and development efficiency related micro organism. Microbiome 2019;7:109.
Wang L, Xu Q, Kong F, Yang Y, Wu D, Mishra S, et al. Exploring the goat rumen microbiome from seven days to 2 years. PLoS ONE. 2016;11:e0154354.
Wilmanski T, Rappaport N, Earls JC, Magis AT, Manor O, Lovejoy J, et al. Blood metabolome predicts intestine microbiome α-diversity in people. Nat Biotechnol. 2019;37:1217–28.
Consortium THMP. Construction, perform and variety of the wholesome human microbiome. Nature 2012;486:207–14.
Xie F, Jin W, Si H, Yuan Y, Tao Y, Liu J, et al. An built-in gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome 2021;9:137.
Lagkouvardos I, Lesker TR, Hitch TCA, Galvez EJC, Smit N, Neuhaus Ok, et al. Sequence and cultivation examine of Muribaculaceae reveals novel species, host choice, and purposeful potential of this but undescribed household. Microbiome 2019;7:28.
Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, et al. The mouse intestinal bacterial assortment (miBC) offers host-specific perception into cultured variety and purposeful potential of the intestine microbiota. Nat Microbiol. 2016;1:16131.
Gharechahi J, Vahidi MF, Bahram M, Han JL, Ding XZ, Salekdeh GH. Metagenomic evaluation reveals a dynamic microbiome with diversified adaptive features to make the most of excessive lignocellulosic forages within the cattle rumen. ISME J. 2021;15:1108–20.
Calusinska M, Marynowska M, Bertucci M, Untereiner B, Klimek D, Goux X, et al. Integrative omics evaluation of the termite intestine system adaptation to Miscanthus weight-reduction plan identifies lignocellulose degradation enzymes. Commun Biol. 2020;3:275.
Ferrer M, Ruiz A, Lanza F, Haange SB, Oberbach A, Until H, et al. Microbiota from the distal guts of lean and overweight adolescents exhibit partial purposeful redundancy moreover clear variations in neighborhood construction. Environ Microbiol. 2013;15:211–26.
Uebanso T, Shimohata T, Mawatari Ok, Takahashi A. Useful roles of B-Nutritional vitamins within the intestine and intestine microbiome. Mol Nutr Meals Res. 2020;64:e2000426.
Singhal P, Bal LM, Satya S, Sudhakar P, Naik SN. Bamboo shoots: a novel supply of vitamin and drugs. Crit Rev Meals Sci Nutr. 2013;53:517–34.
Grizotte-Lake M, Zhong G, Duncan Ok, Kirkwood J, Iyer N, Smolenski I, et al. Commensals suppress intestinal epithelial cell retinoic acid synthesis to control interleukin-22 exercise and stop microbial dysbiosis. Immunity 2018;49:1103–15.
Salsinha AS, Pimentel LL, Fontes AL, Gomes AM, Rodríguez-Alcalá LM. Microbial manufacturing of conjugated linoleic acid and conjugated linolenic acid depends on a multienzymatic system. Microbiol Mol Biol Rev. 2018;82:e00019–18.
O’Shea EF, Cotter PD, Stanton C, Ross RP, Hill C. Manufacturing of bioactive substances by intestinal micro organism as a foundation for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int J Meals Microbiol. 2012;152:189–205.
Fatima I, Akhtar W, Bangash NK, Kanwal S, Rauf N, Malik TSS, et al. Risky profiling, elemental composition and organic actions of aerial elements of seven Poaceae species. Plant Biosyst. 2021; https://doi.org/10.1080/11263504.2021.1952330.
Gagliano J, Anselmo-Moreira F, Sala-Carvalho WR, Furlan CM. What is understood in regards to the medicinal potential of bamboo? Adv Tradit Med. 2021; https://doi.org/10.1007/s13596-020-00536-5.
Yang S, Huang Y, Li C, Jin L, Deng W, Zhao S, et al. The fecal and serum metabolomics of big pandas based mostly on untargeted metabolomics. Zool Sci. 2021;38:179–86.
Miyamoto J, Igarashi M, Watanabe Ok, Karaki SI, Mukouyama H, Kishino S, et al. Intestine microbiota confers host resistance to weight problems by metabolizing dietary polyunsaturated fatty acids. Nat Commun. 2019;10:4007.
Qiong W, Yong T, Yongfang S, Xuguo C, Weiming L. Meat productiveness, dietary compositions and analysis of muscular tissues of hoary bamboo rat. Chin J Wildl. 2019;40:917–23.
Levan SR, Stamnes KA, Lin DL, Panzer AR, Fukui E, McCauley Ok, et al. Elevated faecal 12,13-diHOME focus in neonates at excessive threat for bronchial asthma is produced by intestine micro organism and impedes immune tolerance. Nat Microbiol. 2019;4:1851–61.
Lynes MD, Leiria LO, Lundh M, Bartelt A, Shamsi F, Huang TL, et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med. 2017;23:631–7.
Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Intestine microbiome and serum metabolome alterations in weight problems and after weight-loss intervention. Nat Med. 2017;23:859–68.
Wu J, Yang D, Gong H, Qi Y, Solar H, Liu Y, et al. A number of omics evaluation reveals that top fiber diets promote gluconeogenesis and inhibit glycolysis in muscle. BMC Genomics. 2020;21:660.
den Besten G, van Eunen Ok, Groen AK, Venema Ok, Reijngoud DJ, Bakker BM. The position of short-chain fatty acids within the interaction between weight-reduction plan, intestine microbiota, and host power metabolism. J Lipid Res. 2013;54:2325–40.
van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids. Tendencies Microbiol. 2021:29:700–12.
Yao R, Yang Z, Zhang Z, Hu T, Chen H, Huang F, et al. Are the intestine microbial methods of big pandas unstable? Heliyon 2019;5:e02480.
Zhu C, Laghi L, Zhang Z, He Y, Wu D, Zhang H, et al. First steps towards the enormous panda metabolome database: untargeted metabolomics of feces, urine, serum, and saliva by (1)H NMR. J Proteome Res. 2020;19:1052–9.
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
Edgar RC. Search and clustering orders of magnitude sooner than BLAST. Bioinformatics 2010;26:2460–1.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger Ok, Bushman FD, Costello EK, et al. QIIME permits evaluation of high-throughput neighborhood sequencing information. Nat Strategies. 2010;7:335–6.
Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, et al. Multivariable affiliation discovery in population-scale meta-omics research. PLoS Comput Biol. 2021;17:e1009442.
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and rationalization. Genome Biol. 2011;12:R60.
Ju F, Xia Y, Guo F, Wang Z, Zhang T. Taxonomic relatedness shapes bacterial meeting in activated sludge of worldwide distributed wastewater remedy crops. Environ Microbiol. 2014;16:2421–32.
Csardi G, Nepusz T. The igraph software program package deal for advanced community analysis. Inter J Comp Syst. 2006;1695:1–9.
Dixon P. VEGAN, a package deal of R features for neighborhood ecology. J Veg Sci. 2003;14:927–30.
Bastian M, Heymann S, Jacomy M. Gephi: an open supply software program for exploring and manipulating networks. ICWSM. 2009;3:361–2.
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:i884–i890.
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq utilizing the Trinity platform for reference technology and evaluation. Nat Protoc. 2013;8:1494–512.
Langmead B, Salzberg SL. Quick gapped-read alignment with Bowtie 2. Nat Strategies. 2012;9:357–9.
Davidson NM, Oshlack A. Corset: enabling differential gene expression evaluation for de novo assembled transcriptomes. Genome Biol. 2014;15:410.
Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, et al. Genome-wide midrange transcription profiles reveal expression stage relationships in human tissue specification. Bioinformatics 2005;21:650–9.
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO functions from high quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2018;35:543–8.
Bryant DM, Johnson Ok, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, et al. A tissue-mapped axolotl de novo transcriptome allows identification of limb regeneration elements. Cell Rep. 2017;18:762–76.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 2014;15:550.
Li H, Durbin R. Quick and correct brief learn alignment with Burrows-Wheeler rework. Bioinformatics 2009;25:1754–60.
Li D, Liu CM, Luo R, Sadakane Ok, Lam TW. MEGAHIT: an ultra-fast single-node resolution for big and complicated metagenomics meeting through succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing information. Bioinformatics 2012;28:3150–2.
Gerlach W, Stoye J. Taxonomic classification of metagenomic shotgun sequences with CARMA3. Nucleic Acids Res. 2011;39:e91.
Huang P, Zhang Y, Xiao Ok, Jiang F, Wang H, Tang D, et al. The hen intestine metagenome and the modulatory results of plant-derived benzylisoquinoline alkaloids. Microbiome 2018;6:211.
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular information units. Nucleic Acids Res. 2012;40:D109–D114.
Huerta-Cepas J, Szklarczyk D, Forslund Ok, Cook dinner H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved purposeful annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–D293.
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495.
Ma S, Jiang F, Huang Y, Zhang Y, Wang S, Fan H, et al. A microbial gene catalog of anaerobic digestion from full-scale biogas crops. Gigascience 2021;10:giaa164.
Li Z, Xia J, Jiang L, Tan Y, An Y, Zhu X, et al. Characterization of the human pores and skin resistome and identification of two microbiota cutotypes. Microbiome 2021;9:47.
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide affiliation examine of intestine microbiota in sort 2 diabetes. Nature 2012;490:55–6.
McMurdie PJ, Holmes S. phyloseq: an R package deal for reproducible interactive evaluation and graphics of microbiome census information. PLoS ONE. 2013;8:e61217.
Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: in direction of extra clear and integrative metabolomics evaluation. Nucleic Acids Res. 2018;46:W486–W494.
Solar HZ, Zhou M, Wang O, Chen Y, Liu JX, Guan LL. Multi-omics reveals purposeful genomic and metabolic mechanisms of milk manufacturing and high quality in dairy cows. Bioinformatics 2020;36:2530–7.
Lloyd-Worth J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the intestine microbial ecosystem in inflammatory bowel illnesses. Nature 2019;569:655–62.
Rohart F, Gautier B, Singh A. KA LC. mixOmics: an R package deal for ‚omics characteristic choice and a number of information integration. PLoS Comput Biol. 2017;13:e1005752.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software program surroundings for built-in fashions of biomolecular interplay networks. Genome Res. 2003;13:2498–504.