Samstag, Juli 30, 2022
StartMicrobiologyAntimicrobial properties of chitosan from completely different developmental levels of the bioconverter...

Antimicrobial properties of chitosan from completely different developmental levels of the bioconverter insect Hermetia illucens


  • Dossey, A. T., Tatum, J. T., & McGill, W. L. Fashionable insect-based meals business: present standing, insect processing expertise, and proposals shifting ahead. In Bugs as sustainable meals elements. 113–152 (Tutorial Press, 2016).

  • Van Huis, A. Bugs as meals and feed, a brand new rising agricultural sector: a evaluation. J. Bugs Meals Feed 6(1), 27–44 (2020).

    Article 

    Google Scholar
     

  • Derrien, C., & Boccuni, A. Present standing of the insect producing business in Europe. In Edible bugs in sustainable meals techniques 471–479 (Springer. 2018).

  • Scala, A. et al. Rearing substrate impacts development and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Sci. Rep. 10, 1–8 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Müller, A., Wolf, D. & Gutzeit, H. O. The black soldier fly, Hermetia illucens–a promising supply for sustainable manufacturing of proteins, lipids and bioactive substances. Z. Naturforsch. C. 72, 351–363 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Čičková, H., Newton, G. L., Lacy, R. C. & Kozánek, M. Using fly larvae for natural waste remedy. Waste Handle. 35, 68–80 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Franco, A. et al. Lipids from Hermetia illucens, an revolutionary and sustainable supply. Maintain. 13, 10198 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Franco, A. et al. Lipids from bugs in cosmetics and for private care merchandise. Bugs 13, 41 (2022).

    Article 

    Google Scholar
     

  • Nguyen, H. C. et al. Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel manufacturing. J. Taiwan Inst. Chem. Eng. 85, 165–169 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y. S. & Shelomi, M. Assessment of black soldier fly (Hermetia illucens) as animal feed and human meals. Meals 6, 91 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Moretta, A. et al. A bioinformatic examine of antimicrobial peptides recognized within the Black Soldier Fly (BSF) Hermetia illucens (Diptera: Stratiomyidae). Sci. Rep. 10, 16875 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moretta, A. et al. Antimicrobial peptides: A brand new hope in biomedical and pharmaceutical fields. Entrance. Cell. Infect. Microbiol. 11, 453 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Manniello, M. D. et al. Insect antimicrobial peptides: Potential weapons to counteract the antibiotic resistance. Cell. Mol. Life Sci. 1, 3 (2021).


    Google Scholar
     

  • Somma, A. D. et al. Structural and practical characterization of a novel recombinant antimicrobial peptide from Hermetia illucens. Curr. Points Mol. Biol. 44, 1–13 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ortiz JC, et al., Insect mass manufacturing applied sciences, in Bugs as Sustainable Meals Substances 153–201 (Tutorial Press, 2016).

  • Aravamudhan, A., Ramos, D. M., Nada, A. A., Kumbar, S. G. Pure polymers: polysaccharides and their derivatives for biomedical functions. Pure and artificial biomedical polymers 67–89 (Elsevier, 2014).

  • Santos, V. P. et al. Seafood waste as engaging supply of chitin and chitosan manufacturing and their functions. Int. J. Mol. Sci. 21, 4290 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dutta, P. Ok., Dutta, J. & Tripathi, V. S. Chitin and chitosan: Chemistry, properties and functions. J. Sci. Ind. Res. 63, 20–31 (2004).

    CAS 

    Google Scholar
     

  • Barikani, M., Oliaei, E., Seddiqi, H. & Honarkar, H. Preparation and software of chitin and its derivatives: A evaluation. Iran. Polym. J. 23, 307–326 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Ravi Kumar, M. N. V. A evaluation of chitin and chitosan functions. React. Funct. Polym. 46, 1–27 (2000).

    Article 

    Google Scholar
     

  • Kurita, Ok. Chitin and chitosan: Useful biopolymers from marine crustaceans. Mar. Biotechnol. 8, 203–226 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Hahn, T. et al. Present state of chitin purification and chitosan manufacturing from bugs. J. Chem. Technol. Biotechnol. 95(11), 2775–2795 (2020).

    Article 

    Google Scholar
     

  • Abidin, N. A. Z., Kormin, F., Abidin, N. A. Z., Anuar, N. A. F. M. & Bakar, M. F. A. The potential of bugs as various sources of chitin: An summary on the chemical technique of extraction from varied sources. Int. J. Mol. Sci. 21, 1–25 (2020).


    Google Scholar
     

  • Gunderson, S. & Schiavone, R. The insect exoskeleton: A pure structural composite. JOM 41(11), 60–63 (1989).

    Article 

    Google Scholar
     

  • Majtán, J. et al. Isolation and characterization of chitin from bumblebee (Bombus terrestris). Int. J. Biol. Macromol. 40(3), 237–241 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kaya, M. et al. Fluctuation in physicochemical properties of chitins extracted from completely different physique elements of honeybee. Carbohydr. Polym. 132, 9–16 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaya, M. et al. Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant actions from cosmopolitan Orthoptera species (Insecta). Biotechnol. Bioprocess Eng. 20(1), 168–179 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Sajomsang, W. & Gonil, P. Preparation and characterization of α-chitin from cicada sloughs. Mater. Sci. Eng. C 30, 357–363 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Wang, H. et al. Physicochemical construction of chitin within the growing levels of black soldier fly. Int. J. Biol. Macromol. 149, 901–907 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Badawy, R. & Mohamed, H. Chitin extraction, composition of various six insect species and their comparable traits with that of the shrimp. J. Am. Sci. 11, 127 (2015).


    Google Scholar
     

  • Pillai, C. Ok. S., Paul, W. & Sharma, C. P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 34, 641–678 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Roy, J. C. et al. Solubility of Chitin: Solvents, resolution behaviors and their associated mechanisms. In Solubility of Polysaccharides 3, 20–60 (2017).

  • Zargar, V., Asghari, M. & Dashti, A. A evaluation on chitin and chitosan polymers: construction, chemistry, solubility, derivatives, and functions. ChemBioEng Rev. 2, 204–226 (2015).

    Article 

    Google Scholar
     

  • Aranaz, I. et al. Useful characterization of chitin and chitosan. Curr. Chem. Biol. 3, 203–230 (2009).

    CAS 

    Google Scholar
     

  • Duan, C. et al. Chitosan as a preservative for vegetables and fruit: A evaluation on chemistry and antimicrobial properties. J. Bioresour. Bioproducts 4, 11–21 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Jayakumar, R., Menon, D., Manzoor, Ok., Nair, S. V. & Tamura, H. Biomedical functions of chitin and chitosan primarily based nanomaterials—A brief evaluation. Carbohydr. Polym. 82, 227–232 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Casadidio, C. et al. Chitin and chitosans: Traits, eco-friendly processes, and functions in beauty science. Mar. Medication 17, 369 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nagahama, H. et al. Novel biodegradable chitin membranes for tissue engineering functions. Carbohydr. Polym. 73, 295–302 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Sarode, S. et al. Overview of wastewater remedy strategies with particular give attention to biopolymer chitin-chitosan. Int. J. Biol. Macromol. 121, 1086–1100 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bakshi, P. S., Selvakumar, D., Kadirvelu, Ok. & Kumar, N. S. Chitosan as an surroundings pleasant biomaterial—a evaluation on latest modifications and functions. Int. J. Biol. Macromol. 150, 1072–1083 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fernández-Pan, I., Maté, J. I., Gardrat, C. & Coma, V. Impact of chitosan molecular weight on the antimicrobial exercise and launch charge of carvacrol-enriched movies. Meals Hydrocoll. 51, 60–68 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hirano, S. & Nagao, N. Results of chitosan, pectic acid, lysozyme, and chitinase on the expansion of a number of phytopathogens. Agric. Biol. Chem. 53, 3065–3066 (1989).

    CAS 

    Google Scholar
     

  • Ke, C. L., Deng, F. S., Chuang, C. Y. & Lin, C.-H. Antimicrobial actions and functions of chitosan. Polym. 13, 904 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Papineau, A. M., Hoover, D. G., Knorr, D. & Farkas, D. F. Antimicrobial impact of water-soluble chitosans with excessive hydrostatic strain. Meals Biotechnol. 5(1), 45–57 (1991).

    CAS 
    Article 

    Google Scholar
     

  • Fei Liu, X., Lin Guan, Y., Zhi Yang, D., Li, Z. & De Yao, Ok. Antibacterial motion of chitosan and carboxymethylated chitosan. J. App. Polym. Sci. 79(7), 1324–1335 (2000).

    Article 

    Google Scholar
     

  • Tsai, G.-J. & Su, W.-H. Antibacterial exercise of shrimp chitosan in opposition to Escherichia coli. J. Meals Prot. 62(3), 239–243 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chung, Y.-C. & Chen, C.-Y. Antibacterial traits and exercise of acid-soluble chitosan. Bioresour. Technol. 99(8), 2806–2814 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Younger, D. H. & Kauss, H. Launch of calcium from suspension-cultured glycine max cells by chitosan, different polycations, and polyamines in relation to results on membrane permeability. Plant physiol. 73(3), 698–702 (1983).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goy, R. C., de Britto, D. & Assis, O. B. G. A evaluation of the antimicrobial exercise of chitosan. Polímeros 19(3), 241–247 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Raafat, D., von Bargen, Ok., Haas, A. & Sahl, H.-G. Insights into the mode of motion of chitosan as an antibacterial compound. Appl. Environ. Microbiol. 74(12), 3764–3773 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yilmaz Atay, H. Antibacterial Exercise of Chitosan-Based mostly Programs. Func. Chitosan Drug Deliv. Biomed. Appl. 457–489 (2020).

  • Guibal, E. Interactions of steel ions with chitosan-based sorbents: a evaluation. Sep. Purif. Technol. 38(1), 43–74 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Chien, R.-C., Yen, M.-T. & Mau, J.-L. Antimicrobial and antitumor actions of chitosan from shiitake stipes, in comparison with business chitosan from crab shells. Carbohydr. Polym. 138, 259–264 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, X., Yun, L., Dong, Z., Zhi, L. & Kang, D. Antibacterial motion of chitosan and carboxymethylated chitosan. J. Appl. Polym. Sci. 79, 1324–1335 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Nikaido, H. & Vaara, M. Molecular foundation of bacterial outer membrane permeability. Microbiol Rev. 49, 1–32 (1985).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hosseinnejad, M. & Jafari, S. M. Analysis of various elements affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 85, 467–475 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Devlieghere, F., Vermeulen, A. & Debevere, J. Chitosan: antimicrobial exercise, interactions with meals parts and applicability as a coating on fruit and greens. Meals Microbiol. 21, 703–714 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Chung, Y. C. et al. Relationship between antibacterial exercise of chitosan and floor traits of cell wall. Acta Pharmacol. Sin. 25(7), 932–936 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez-Saiz, P., Lagaron, J. M. & Ocio, M. J. Optimization of the movie forming and storage circumstances of chitosan as an antimicrobial agent. J. Agric. Meals Chem. 57, 3298–3307 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • No, H. Antibacterial exercise of chitosans and chitosan oligomers with completely different molecular weights. Int. J. Meals Microbiol. 74(1–2), 65–72 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eaton, P., Fernandes, J. C., Pereira, E., Pintado, M. E. & Xavier-Malcata, F. Atomic drive microscopy examine of the antibacterial results of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy 108(10), 1128–1134 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng, L.-Y. & Zhu, J.-F. Research on antimicrobial exercise of chitosan with completely different molecular weights. Carb. Polym. 54(4), 527–530 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Nuñez, M. Micrococcus. Encyclopedia of Meals Microbiology, 627–633 (Tutorial press, 2014).

  • Luo, Q. et al. Comparability of the physicochemical, rheological, and morphologic properties of chitosan from 4 bugs. Carbohydr. Polym. 209, 266–275 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaya, M. et al. Physicochemical comparability of chitin and chitosan obtained from larvae and grownup Colorado potato beetle (Leptinotarsa decemlineata). Mater. Sci. Eng. C 45, 72–81 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Kaya, M., Erdogan, S., Mol, A. & Baran, T. Comparability of chitin constructions remoted from seven Orthoptera species. Int. J. Biol. Macromol. 72, 797–805 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaya, M. et al. Differentiations of Chitin content material and floor morphologies of chitins extracted from female and male grasshopper species. PLoS One 10, (2015).

  • Lagat, M. Ok. et al. Antimicrobial exercise of chemically and biologically handled chitosan ready from black soldier fly (Hermetia illucens) Pupal Shell Waste. Microorganisms 9, 2417 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kemboi, V. J. et al. Biocontrol potential of chitin and chitosan extracted from black soldier fly pupal exuviae in opposition to bacterial wilt of tomato. Microorganisms 10, 165 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Basseri, H. et al. Antibacterial/Antifungal Exercise of Extracted Chitosan From American Cockroach (Dictyoptera: Blattidae) and German Cockroach (Blattodea: Blattellidae). J. Med. Entomol. 56(5), 1208–1214 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaya, M. et al. DNA interplay, antitumor and antimicrobial actions of three-dimensional chitosan ring produced from the physique segments of a diplopod. Carbohydr. Polym. 146, 80–89 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shin, C.-S., Kim, D.-Y., & Shin, W.-S. Characterization of chitosan extracted from Mealworm Beetle (Tenebrio molitor, Zophobas morio) and Rhinoceros Beetle (Allomyrina dichotoma) and their antibacterial actions. Int. J. Biol. Macromol. (2018).

  • Younes, I. et al. Chitin extraction from shrimp shell utilizing enzymatic remedy. Antitumor, antioxidant and antimicrobial actions of chitosan. Int. J. Biol. Macromol. 69, 489–498 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aliasghari, A. et al. Analysis of antibacterial effectivity of chitosan and chitosan nanoparticles on cariogenic streptococci: An in vitro examine. Iran. J. Microbiol. 8, 93–100 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-masry, A., Fahmy, H. & Ali Abdelwahed, S. Synthesis and Antimicrobial Exercise of Some New Benzimidazole Derivatives. Molecules 5(12), 1429–1438 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Liu, N. et al. Impact of MW and focus of chitosan on antibacterial exercise of Escherichia coli. Carbohydr. Polym. 64(1), 60–65 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Salamaa, A., Hasaninb, M. & Hesemanna, P. Synthesis and antimicrobial properties of recent chitosan derivatives containing guanidinium teams. Carbohydr Polym. 1, 116363 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shehabeldine, A. & Hasanin, M. Inexperienced synthesis of hydrolyzed starch–chitosan nano-composite as drug supply system to gram adverse micro organism. Environ. Nanotech. Monitor. Manag. 12, 100252–100260 (2019).


    Google Scholar
     

  • Anush, S. M., Vishalakshi, B., Kalluraya, B. & Manju, N. Synthesis of pyrazole-based Schiff bases of Chitosan: Analysis of antimicrobial exercise. Int. J. Biol. Macromol. 119, 446–452 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sahariah, P. et al. Influence of chain size on antibacterial exercise and hemocompatibility of quaternary N-Alkyl and N, N-Dialkyl Chitosan Derivatives. Biomacromol. 16(5), 1449–1460 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Ramasamy, P. et al. Screening of antimicrobial potential of polysaccharide from cuttlebone and methanolic extract from physique tissue of Sepia prashadi Winkworth, 1936. Asian Pac. J. Trop. Biomed. 1(2), S244–S248 (2011).

    Article 

    Google Scholar
     

  • Shanmugam, A., Kathiresan, Ok. & Nayak, L. Preparation, characterization and antibacterial exercise of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885). Biotechnol. Rep. 9, 25–30 (2016).

    Article 

    Google Scholar
     

  • Lin, Y.-S. et al. Sustainable extraction of chitin from spent pupal shell of black soldier fly. Processes 9, 976 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Khayrova, A. et al. Analysis of antibacterial and antifungal properties of low molecular weight chitosan extracted from Hermetia illucens relative to crab chitosan. Molecules 27, 577 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, J., Wu, Y. & Zhao, L. Antibacterial exercise and mechanism of chitosan with extremely excessive molecular weight. Carbohydr. Polym. 148, 200–205 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tayel, A. A. et al. Inhibition of microbial pathogens by fungal chitosan. Int. J. Biol. Macromol. 47(1), 10–14 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vilar Junior, J. C., Ribeaux, D. R., Alves da Silva, C. A., & De Campos-Takaki, G. M. Physicochemical and antibacterial properties of chitosan extracted from waste shrimp shells. Int. J. Microbiol. 1, (2016).

  • Triunfo, M. et al. Characterization of chitin and chitosan derived from Hermetia illucens, an additional step in a round economic system course of. Sci. Rep. 12(1), 1–17 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fraise, A. P., Wilkinson, M. A. C., Bradley, C. R., Oppenheim, B. & Moiemen, N. The antibacterial exercise and stability of acetic acid. J. Hosp. Infect. 84(4), 329–331 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wali, M. Ok. & Abed, M. M. Antibacterial exercise of acetic acid in opposition to various kinds of micro organism causes meals spoilage. Plant Arch. 19(1), 1827–1831 (2019).


    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments