Dienstag, August 2, 2022
StartMicrobiologyAssessing the pathogenicity of intestine micro organism related to tobacco caterpillar Spodoptera...

Assessing the pathogenicity of intestine micro organism related to tobacco caterpillar Spodoptera litura (Fab.)


  • Engel, P. & Moran, N. A. The intestine microbiota of insects-diversity in construction and performance. FEMS Microbiol. Rev. 37(5), 699–735 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ali, H. R., Hemeda, N. F. & Abdelaliem, Y. F. Symbiotic cellulolytic micro organism from the intestine of the subterranean termite Psammotermes hypostoma Desneux and their position in cellulose digestion. AMB Specific 9(1), 1–9 (2019).

    Article 

    Google Scholar
     

  • Wang, J. M. et al. Range of the intestine microbiome in three grasshopper species utilizing 16S rRNA and willpower of cellulose digestibility. PeerJ 8, e10194 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking bugs. Annu. Rev. Microbiol. 59, 155–189 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Douglas, A. E., Francois, C. L. M. J. & Minto, L. B. Facultative ‘secondary’bacterial symbionts and the vitamin of the pea aphid, Acyrthosiphon pisum. Physiol. Entomol. 31(3), 262–269 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Ceja-Navarro, J. A. et al. Intestine microbiota mediate caffeine cleansing within the major insect pest of espresso. Nat. Commun. 6(1), 1–9 (2015).

    Article 

    Google Scholar
     

  • Sharon, G. et al. Commensal micro organism play a job in mating choice of Drosophila melanogaster. Proc. Natl. Acad. Sci. 107(46), 20051–20056 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sharon, G., Segal, D., Zilber-Rosenberg, I. & Rosenberg, E. Symbiotic micro organism are liable for diet-induced mating choice in Drosophila melanogaster, offering assist for the hologenome idea of evolution. Intestine Microbes 2(3), 190–192 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Mason, Ok. L. et al. From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the haemocoel of Manduca sexta. MBio 2(3), e00065-e111 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Haloi, Ok., Kalita, M. Ok., Nath, R. & Devi, D. Characterization and pathogenicity evaluation of gut-associated microbes of muga silkworm Antheraea assamensis Helfer (Lepidoptera: Saturniidae). J. Invertebr. Pathol. 138, 73–85 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ketola, T., Mikonranta, L., Laakso, J. & Mappes, J. Completely different meals sources elicit quick modifications to bacterial virulence. Biol. Lett. 12(1), 20150660 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Broderick, N. A. et al. Contributions of intestine micro organism to Bacillus thuringiensis-induced mortality fluctuate throughout a variety of Lepidoptera. BMC Biol. 7(1), 1–9 (2009).

    MathSciNet 
    Article 

    Google Scholar
     

  • Ffrench-Fixed, R. et al. Photorhabdus: In direction of a purposeful genomic evaluation of a symbiont and pathogen. FEMS Microbiol. Rev. 26(5), 433–456 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thakur, A., Dhammi, P., Saini, H. S. & Kaur, S. Pathogenicity of micro organism remoted from intestine of Spodoptera litura (Lepidoptera: Noctuidae) and health prices of insect related to consumption of micro organism. J. Invertebr. Pathol. 127, 38–46 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Cakici, F. O., Sevim, A., Demirbag, Z. & Demir, I. Investigating inner micro organism of Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae) larvae and a few Bacillus strains as biocontrol brokers. Turk. J. Agric. For. 38(1), 99–110 (2014).

    Article 

    Google Scholar
     

  • Zhang, P., Zhao, Q., Ma, X. & Ma, L. Pathogenicity of Serratia marcescens to hazelnut weevil (Curculio dieckmanni). J. For. Res. 32(1), 409–417 (2021).

    Article 

    Google Scholar
     

  • Ahmad, M., Ghaffar, A. & Rafiq, M. Host crops of leaf worm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in Pakistan. Asian J. Agric. Biol. 1, 23–28 (2013).


    Google Scholar
     

  • Dudhbale, C., Surpam, A., Kothikar, R. & Koche, M. Bio-efficacy of chemical pesticides in opposition to Spodoptera litura infesting soybean. Am. J. Entomol. 1(1), 16–18 (2017).


    Google Scholar
     

  • Saleem, M., Hussain, D., Ghouse, G., Abbas, M. & Fisher, S. W. Monitoring of insecticide resistance in Spodoptera litura (Lepidoptera: Noctuidae) from 4 districts of Punjab, Pakistan to standard and new chemistry pesticides. Crop Prot. 79, 177–184 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Ahmad, M., Sayyed, A. H., Saleem, M. A. & Ahmad, M. Proof for subject developed resistance to newer pesticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Prot. 27(10), 1367–1372 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Sang, S. et al. Cross-resistance and baseline susceptibility of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) to cyantraniliprole within the south of China. Pest Manag. Sci. 72(5), 922–928 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, X. et al. Insecticide resistance and enhanced cytochrome P450 monooxygenase exercise in subject populations of Spodoptera litura from Sichuan, China. Crop Prot. 106, 110–116 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Gandhi, Ok., Patil, R. H. & Srujana, Y. Discipline resistance of Spodoptera litura (Fab.) to standard pesticides in India. Crop Prot. 88, 103–108 (2016).

    Article 

    Google Scholar
     

  • Tong, H., Su, Q., Zhou, X. & Bai, L. Discipline resistance of Spodoptera litura (Lepidoptera: Noctuidae) to organophosphates, pyrethroids, carbamates and 4 newer chemistry pesticides in Hunan, China. J. Pest Sci. 86(3), 599–609 (2013).

    Article 

    Google Scholar
     

  • Zago, H. B., Siqueira, H. A., Pereira, E. J., Picanço, M. C. & Barros, R. Resistance and behavioural response of Plutella xylostella (Lepidoptera: Plutellidae) populations to Bacillus thuringiensis formulations. Pest Manag. Sci. 70(3), 488–495 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Naik, V. C., Kumbhare, S., Kranthi, S., Satija, U. & Kranthi, Ok. R. Discipline-evolved resistance of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), to transgenic Bacillus thuringiensis (Bt) cotton expressing crystal 1Ac (Cry1Ac) and Cry2Ab in India. Pest Manag. Sci. 74(11), 2544–2554 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang, F., Williams, J., Porter, P., Huang, F. & Kerns, D. L. F2 display for resistance to Bacillus thuringiensis Vip3Aa51 protein in subject populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) from Texas, USA. Crop Prot. 126, 104915 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yang, Y., Li, Y. & Wu, Y. Present standing of insecticide resistance in Helicoverpa armigera after 15 years of Bt cotton planting in China. J. Econ. Entomol. 106(1), 375–381 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eski, A., Demir, I., Güllü, M. & Demirbağ, Z. Biodiversity and pathogenicity of micro organism related to the intestine microbiota of beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Microb. Pathog. 121, 350–358 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Zhang, Y. et al. Isolation and identification of two Serratia marcescens strains from silkworm, Bombyx mori. Antonie Leeuwenhoek 113(9), 1313–1321 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ishii, Ok., Adachi, T., Hara, T., Hamamoto, H. & Sekimizu, Ok. Identification of a Serratia marcescens virulence issue that promotes hemolymph bleeding within the silkworm, Bombyx mori. J. Invertebr. Pathol. 117, 61–67 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cappellozza, S. et al. Identification of Enterococcus mundtii as a pathogenic agent concerned within the “flacherie” illness in Bombyx mori L. larvae reared on synthetic weight loss plan. J. Invertebr. Pathol. 106(3), 386–393 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • De Mandal, S. et al. iTRAQ-based comparative proteomic evaluation of larval midgut from the beet armyworm, Spodoptera exigua (Hübner)(Lepidoptera: Noctuidae) challenged with the entomopathogenic micro organism Serratia marcescens. Entrance. Physiol. 11, 442 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tambong, J. T. et al. Molecular detection and evaluation of a novel metalloprotease gene of entomopathogenic Serratia marcescens strains in contaminated Galleria mellonella. Can. J. Microbiol. 60(4), 203–209 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ruiu, L. et al. Oral insecticidal exercise of recent bacterial isolates in opposition to bugs in two orders. Biocontrol Sci. Technol. 27(7), 886–902 (2017).

    Article 

    Google Scholar
     

  • Bidari, F., Shams-Bakhsh, M. & Mehrabadi, M. Isolation and characterization of a Serratia marcescens with insecticidal exercise from Polyphylla olivieri (Col.: Scarabaeidae). J. Appl. Entomol. 142(1–2), 162–172 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Youngjin, P., Kim, Ok. & Kim, Y. A pathogenic bacterium, Enterococcus faecalis, to the beet armyworm, Spodoptera exigua. J. Asia Pac. Entomol. 5(2), 221–225 (2002).

    MathSciNet 
    Article 

    Google Scholar
     

  • Chibebe Junior, J. et al. Photodynamic and antibiotic remedy impair the pathogenesis of Enterococcus faecium in a complete animal insect mannequin. PLoS ONE 8(2), e55926 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park, S. Y., Kim, Ok. M., Lee, J. H., Search engine optimization, S. J. & Lee, I. H. Extracellular gelatinase of Enterococcus faecalis destroys a protection system in insect hemolymph and human serum. Infect. Immun. 75(4), 1861–1869 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jurat-Fuentes, J. L., Jackson, T. A., Kaya, H. & Vera, F. Bacterial entomopathogens. Insect Pathol. 1, 265–349 (2012).

    Article 

    Google Scholar
     

  • Tan, B., Jackson, T. A. & Hurst, M. R. Virulence of Serratia strains in opposition to Costelytra zealandica. Appl. Environ. Microbiol. 72(9), 6417–6418 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aggarwal, C., Paul, S., Tripathi, V., Paul, B. & Khan, M. A. Characterization of putative virulence components of Serratia marcescens pressure SEN for pathogenesis in Spodoptera litura. J. Invertebr. Pathol. 143, 115–123 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Merzendorfer, H. & Zimoch, L. Chitin metabolism in bugs: construction, perform and regulation of chitin synthases and chitinases. J. Exp. Biol. 206(24), 4393–4412 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen, S., Blom, J. & Walker, E. D. Genomic, physiologic, and symbiotic characterization of Serratia marcescens strains remoted from the mosquito Anopheles stephensi. Entrance. Microbiol. 8, 1483 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Petersen, L. M. & Tisa, L. S. Molecular characterization of protease exercise in Serratia sp. pressure SCBI and its significance in cytotoxicity and virulence. J. Bacteriol. 196(22), 3923–3936 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aggarwal, C., Paul, S., Tripathi, V., Paul, B. & Khan, M. A. Chitinolytic exercise in Serratia marcescens (pressure SEN) and efficiency in opposition to completely different larval instars of Spodoptera litura with impact of sublethal doses on insect growth. Biol. Management. 60(5), 631–640 (2015).


    Google Scholar
     

  • Shimuta, Ok. et al. The hemolytic and cytolytic actions of Serratia marcescens phospholipase A (PhlA) rely upon lysophospholipid manufacturing by PhlA. BMC Microbiol. 9(1), 1–10 (2009).

    Article 

    Google Scholar
     

  • Mohan, M., Selvakumar, G., Sushil, S. N., Bhatt, J. C. & Gupta, H. S. Entomopathogenicity of endophytic Serratia marcescens pressure SRM in opposition to larvae of Helicoverpa armigera (Noctuidae: Lepidoptera). World J. Microbiol. Biotechnol. 27(11), 2545–2551 (2011).

    Article 

    Google Scholar
     

  • Sikorowski, P. P. & Lawrence, A. M. Transmission of Serratia marcescens (Enterobacteriaceae) in grownup heliothis virescens (Lepidoptera: Noctuidae) laboratory colonies. Biol. Management. 12(1), 50–55 (1998).

    Article 

    Google Scholar
     

  • González-Serrano, F. et al. The intestine microbiota composition of the moth Brithys crini displays insect metamorphosis. Microb. Ecol. 79(4), 960–970 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Lin, X. L., Kang, Z. W., Pan, Q. J. & Liu, T. X. Analysis of 5 antibiotics on larval intestine bacterial variety of Plutella xylostella (Lepidoptera: Plutellidae). Insect Sci. 22(5), 619–628 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen, B. et al. Biodiversity and exercise of the intestine microbiota throughout the life historical past of the insect herbivore Spodoptera littoralis. Sci. Rep. 6(1), 1–14 (2016).

    Article 

    Google Scholar
     

  • Sikorowski, P. P. & Lawrence, A. M. Microbial contamination and bug rearing. Am. Entomol. 40(4), 240–253 (1994).

    Article 

    Google Scholar
     

  • Alverdy, J., Holbrook, C., Rocha, F., Seiden, L. & Licheng, R. Intestine-derived sepsis happens when the correct pathogen with the correct virulence genes meets the correct host: Proof for in vivo virulence expression in Pseudomonas aeruginosa. Ann. Surg. 232(4), 480 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ryu, J. H. et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Sci. 319(5864), 777–782 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Robinson, C. J., Schloss, P., Ramos, Y., Raffa, Ok. & Handelsman, J. Robustness of the bacterial neighborhood within the cabbage white butterfly larval midgut. Microb. Ecol. 59(2), 199–211 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Vacheron, J. et al. T6SS contributes to intestine microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens. ISME J. 13(5), 1318–1329 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Khaeso, Ok. et al. Assessing the results of intestine micro organism manipulation on the event of the oriental fruit fly, Bactrocera dorsalis (Diptera; Tephritidae). Symbiosis 74(2), 97–105 (2018).

    Article 

    Google Scholar
     

  • Nathan, S. S., Chung, P. G. & Murugan, Ok. Impact of biopesticides utilized individually or collectively on dietary indices of the rice leaffolder Cnaphalocrocis medinalis. Phytoparasitica 33(2), 187 (2005).

    Article 

    Google Scholar
     

  • Chandrasekaran, R. et al. Physiological impact of chitinase purified from Bacillus subtilis in opposition to the tobacco cutworm Spodoptera litura Fab. Pestic. Biochem. Physiol. 104(1), 65–71 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Datta, R., Kaur, A., Saraf, I., Singh, I. P. & Kaur, S. Impact of crude aextracts and purified compounds of Alpinia galanga on dietary physiology of a polyphagous lepidopteran pest, Spodoptera litura (Fabricius). Ecotoxicol. Environ. Saf. 168, 324–329 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Farrar, R. R., Barbour, J. D. & Kennedy, G. G. Quantifying meals consumption and development in bugs. Ann. Entomol. Soc. Am. 82(5), 593–598 (1989).

    Article 

    Google Scholar
     

  • Verma, P. S. & Srivastava, P. C. Superior Sensible Zoology (S. Chand and firm Ltd, 2012).


    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments