Stergiopoulos, I., Collemare, J., Mehrabi, R. & Wit, P. J. Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol. Rev. 37, 67–93 (2013).
Pusztahelyi, T., Holb, I. J. & Pócsi, I. Secondary metabolites in fungus-plant interactions. Entrance. Plant Sci. 6, 573 (2015).
Horbach, R., Navarro-Quesada, A. R., Knogge, W. & Deising, H. B. When and learn how to kill a plant cell: An infection methods of plant pathogenic fungi. J. Plant Physiol. 168, 51–62 (2011).
Walton, J. D. Host-selective toxins: Brokers of compatibility. Plant Cell 8, 1723–1733 (1996).
Petrov, V., Qureshi, M. Ok., Hille, J. & Gechev, T. Prevalence, biochemistry and organic results of host-selective plant mycotoxins. Meals Chem. Toxicol. 112, 251–264 (2018).
Möbius, N. & Hertweck, C. Fungal phytotoxins as mediators of virulence. Curr. Opin. Plant Biol. 12, 390–398 (2009).
Wolpert, T. J., Dunkle, L. D. & Ciuffetti, L. M. Host-selective toxins and avirulence determinants: What’s in a Title?. Annu. Rev. Phytopathol. 40, 251–285 (2002).
Meena, M. & Samal, S. Alternaria host-specific (HSTs) toxins: An summary of chemical characterization, goal websites, regulation and their poisonous results. Toxicol. Rep. 6, 745–758 (2019).
Turgeon, B. G. & Baker, S. E. Genetic and genomic dissection of the Cochliobolus heterostrophus Tox1 locus controlling biosynthesis of the polyketide virulence issue T-toxin. Adv. Genet. 57, 219–261 (2007).
Walton, J. D. HC-toxin. Phytochemistry 67, 1406–1413 (2006).
Wolpert, T. J. & Macko, V. Particular binding of victorin to a 100-kDa protein from oats. Proc. Natl. Acad. Sci. 86, 4092–4096 (1989).
Keller, N. P., Turner, G. & Bennett, J. W. Fungal secondary metabolism—From biochemistry to genomics. Nat. Rev. Microbiol. 3, 937–947 (2005).
Brakhage, A. A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 11, 21–32 (2013).
Keller, N. P. Fungal secondary metabolism: Regulation, perform and drug discovery. Nat. Rev. Microbiol. 17, 167–180 (2018).
Shen, B. Polyketide biosynthesis past the sort I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 7, 285–295 (2003).
Staunton, J. & Weissman, Ok. J. Polyketide biosynthesis: A millennium overview. Nat. Prod. Rep. 18, 380–416 (2001).
Shimizu, Y., Ogata, H. & Goto, S. Kind III polyketide synthases: Useful classification and phylogenomics. ChemBioChem 18, 50–65 (2017).
Hashimoto, M., Nonaka, T. & Fujii, I. Fungal kind III polyketide synthases. Nat. Prod. Rep. 31, 1306–1317 (2014).
Robbins, T., Liu, Y.-C., Cane, D. E. & Khosla, C. Construction and mechanism of meeting line polyketide synthases. Curr. Opin. Struct. Biol. 41, 10–18 (2016).
Herbst, D. A., Townsend, C. A. & Maier, T. The architectures of iterative kind I PKS and FAS. Nat. Prod. Rep. 35, 1046–1069 (2018).
Hertweck, C. The biosynthetic logic of polyketide variety. Angew. Chem. Int. Ed. 48, 4688–4716 (2009).
Ahuja, M. et al. Illuminating the variety of fragrant polyketide synthases in Aspergillus nidulans. J. Am. Chem. Soc. 134, 8212–8221 (2012).
Chooi, Y.-H., Cacho, R. & Tang, Y. Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum. Chem. Biol. 17, 483–494 (2010).
Li, Y., Xu, W. & Tang, Y. Classification, prediction, and verification of the regioselectivity of fungal polyketide synthase product template domains. J. Biol. Chem. 285, 22764–22773 (2010).
Crawford, J. M. et al. Deconstruction of iterative multidomain polyketide synthase perform. Science 320, 243–246 (2008).
Chooi, Y.-H. & Tang, Y. Navigating the fungal polyketide chemical house: From genes to molecules. J. Org. Chem. 77, 9933–9953 (2012).
Liu, L. et al. Bioinformatical evaluation of the sequences, buildings and capabilities of fungal polyketide synthase product template domains. Sci. Rep. 5, 10463 (2015).
Liu, L., Zhang, Z., Shao, C.-L. & Wang, C.-Y. Evaluation of the sequences, buildings, and capabilities of product-releasing enzyme domains in fungal polyketide synthases. Entrance. Microbiol. 8, 1685 (2017).
Du, L. & Lou, L. PKS and NRPS launch mechanisms. Nat. Prod. Rep. 27, 255–278 (2010).
Reimer, J. M., Haque, A. S., Tarry, M. J. & Schmeing, T. M. Piecing collectively nonribosomal peptide synthesis. Curr. Opin. Struct. Biol. 49, 104–113 (2018).
McErlean, M., Overbay, J. & Van Lanen, S. Refining and increasing nonribosomal peptide synthetase perform and mechanism. J. Ind. Microbiol. Biotechnol. 46, 493–513 (2019).
Bushley, Ok. E. & Turgeon, B. G. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol. Biol. 10, 26 (2010).
Yun, C.-S., Motoyama, T. & Osada, H. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS–PKS hybrid enzyme. Nat. Commun. 6, 8758 (2015).
Farrar, J. J., Pryor, B. M. & Davis, R. M. Alternaria ailments of carrot. Plant Dis. 88, 776–784 (2004).
Ben-Midday, E., Shtienberg, D., Shlevin, E., Vintal, H. & Dinoor, A. Optimization of chemical suppression of Alternaria dauci, the causal agent of Alternaria leaf blight in carrots. Plant Dis. 85, 1149–1156 (2001).
Davis, R. M. Carrot ailments and their administration. in Ailments of Fruits and Greens Quantity I 397–439 (Springer, 2004).
Lecomte, M. et al. Partial resistance of carrot to Alternaria dauci correlates with in vitro cultured carrot cell resistance to fungal exudates. PLoS ONE 9, e101008 (2014).
Meena, M. et al. Alternaria toxins: Potential virulence elements and genes associated to pathogenesis. Entrance. Microbiol. 8, 1451 (2017).
Courtial, J. et al. Aldaulactone—An authentic phytotoxic secondary metabolite concerned within the aggressiveness of Alternaria dauci on carrot. Entrance. Plant Sci. 9, 502 (2018).
Barash, I., Mor, H., Netzer, D. & Kashman, Y. Manufacturing of zinniol by Alternaria dauci and its phytotoxic impact on carrot. Physiol. Plant Pathol. 19, 7-IN9 (1981).
Leyte-Lugo, M., Richomme, P., Poupard, P. & Peña-Rodriguez, L. M. Identification and quantification of a phytotoxic metabolite from Alternaria dauci. Molecules 25, 4003 (2020).
Pinto, V. E. F. & Patriarca, A. Alternaria Species and Their Related Mycotoxins. in Mycotoxigenic Fungi: Strategies and Protocols (eds. Moretti, A. & Susca, A.) 13–32 (Springer, New York, 2017). https://doi.org/10.1007/978-1-4939-6707-0_2.
Freeman, G. G. Isolation of alternariol and alternariol monomethyl ether from Alternaria dauci (kühn) groves and skolko. Phytochemistry 5, 719–725 (1966).
Wenderoth, M. et al. Alternariol as virulence and colonization issue of Alternaria alternata throughout plant an infection. Mol. Microbiol. 112, 131–146 (2019).
Qui, J. A., Castro-Concha, L. A., García-Sosa, Ok., Miranda-Ham, M. L. & Peña-Rodríguez, L. M. Is zinniol a real phytotoxin? Analysis of its exercise on the mobile degree in opposition to Tagetes erecta. J. Gen. Plant Pathol. 76, 94–101 (2010).
Zheng, L., Lv, R., Huang, J., Jiang, D. & Hsiang, T. Isolation, purification, and organic exercise of a phytotoxin produced by Stemphylium solani. Plant Dis. 94, 1231–1237 (2010).
Cochrane, R. V. Ok. et al. Comparability of 10,11-dehydrocurvularin polyketide synthases from Alternaria cinerariae and Aspergillus terreus highlights key structural motifs. Chembiochem. Eur. J. Chem. Biol. 16, 2479–2483 (2015).
Kim, Y.-T. et al. Two completely different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol. Microbiol. 58, 1102–1113 (2005).
Xie, X., Meehan, M. J., Xu, W., Dorrestein, P. C. & Tang, Y. Acyltransferase mediated polyketide launch from a fungal megasynthase. J. Am. Chem. Soc. 131, 8388–8389 (2009).
Zhou, H. et al. Enzymatic synthesis of resorcylic acid lactones by cooperation of fungal iterative polyketide synthases concerned in hypothemycin biosynthesis. J. Am. Chem. Soc. 132, 4530–4531 (2010).
Reeves, C. D., Hu, Z., Reid, R. & Kealey, J. T. Genes for the biosynthesis of the fungal polyketides hypothemycin from Hypomyces subiculosus and radicicol from Pochonia chlamydosporia. Appl. Environ. Microbiol. 74, 5121–5129 (2008).
Wang, S. et al. Useful characterization of the biosynthesis of radicicol, an Hsp90 inhibitor resorcylic acid lactone from Chaetomium chiversii. Chem. Biol. 15, 1328–1338 (2008).
Gaffoor, I. & Path, F. Characterization of two polyketide synthase genes concerned in zearalenone biosynthesis in Gibberella zeae. Appl. Environ. Microbiol. 72, 1793–1799 (2006).
Horsman, M. E., Hari, T. P. A. & Boddy, C. N. Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: Logic gate or a sufferer of destiny?. Nat. Prod. Rep. 33, 183–202 (2016).
Dang, H. X., Pryor, B., Peever, T. & Lawrence, C. B. The Alternaria genomes database: A complete useful resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species. BMC Genomics 16, 1–9 (2015).
Zhang, S. V., Zhuo, L. & Hahn, M. W. AGOUTI: bettering genome meeting and annotation utilizing transcriptome knowledge. GigaScience 5, s13742-016 (2016).
Wolters, P. J. et al. Gapless genome meeting of the potato and tomato early blight pathogen Alternaria solani. Mol. Plant. Microbe Work together. 31, 692–694 (2018).
Chen, Ok.-T. & Lu, C. L. CSAR-web: An internet server of contig scaffolding utilizing algebraic rearrangements. Nucleic Acids Res. 46, W55–W59 (2018).
Oide, S. et al. NPS6, encoding a nonribosomal peptide synthetase concerned in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18, 2836–2853 (2006).
Kroken, S., Glass, N. L., Taylor, J. W., Yoder, O. C. & Turgeon, B. G. Phylogenomic evaluation of kind I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc. Natl. Acad. Sci. 100, 15670–15675 (2003).
Boedo, C. et al. Evaluating aggressiveness and host vary of Alternaria dauci in a managed atmosphere: Evaluating aggressiveness and host vary of Alternaria dauci. Plant Pathol. 61, 63–75 (2012).
Lou, J., Fu, L., Peng, Y. & Zhou, L. Metabolites from Alternaria fungi and their bioactivities. Molecules 18, 5891–5935 (2013).
Noar, R. D. & Daub, M. E. Bioinformatics prediction of polyketide synthase gene clusters from Mycosphaerella fijiensis. PLoS ONE 11, e0158471 (2016).
Andersen, B., Dongo, A. & Pryor, B. M. Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila. Mycol. Res. 112, 241–250 (2008).
Kimura, N. & Tsuge, T. Gene cluster concerned in melanin biosynthesis of the filamentous fungus Alternaria alternata. J. Bacteriol. 175, 4427–4435 (1993).
Li, Y.-H. et al. Putative nonribosomal peptide synthetase and cytochrome P450 genes answerable for tentoxin biosynthesis in Alternaria alternata ZJ33. Toxins 8, 234 (2016).
Boedo, C. et al. Influence of carrot resistance on growth of the Alternaria leaf blight pathogen (Alternaria dauci). Eur. J. Plant Pathol. 121, 55–66 (2008).
Kjærbølling, I., Mortensen, U. H., Vesth, T. & Andersen, M. R. Methods to determine the hyperlink between biosynthetic gene clusters and secondary metabolites. Fungal Genet. Biol. 130, 107–121 (2019).
Macheleidt, J. et al. Regulation and position of fungal secondary metabolites. Annu. Rev. Genet. 50, 371–392 (2016).
Pfannenstiel, B. T. & Keller, N. P. On high of biosynthetic gene clusters: How epigenetic equipment influences secondary metabolism in fungi. Biotechnol. Adv. 37, 107345 (2019).
Li, C.-Y. et al. Pure merchandise growth underneath epigenetic modulation in fungi. Phytochem. Rev. https://doi.org/10.1007/s11101-020-09684-7 (2020).
Xu, Y. et al. Characterization of the biosynthetic genes for 10, 11-dehydrocurvularin, a warmth shock response-modulating anticancer fungal polyketide from Aspergillus terreus. Appl. Environ. Microbiol. 79, 2038–2047 (2013).
Iacomi-Vasilescu, B. et al. In vitro fungicide sensitivity of Alternaria species pathogenic to crucifers and identification of Alternaria brassicicola subject isolates extremely proof against each dicarboximides and phenylpyrroles. Crop Prot. 23, 481–488 (2004).
Belmas, E. et al. Genome sequence of the necrotrophic plant pathogen Alternaria brassicicola Abra43. Genome Announc. 6, e01559-17 (2018).
Schulz, M. H., Zerbino, D. R., Vingron, M. & Birney, E. Oases: Strong de novo RNA-seq meeting throughout the dynamic vary of expression ranges. Bioinform. Oxf. Engl. 28, 1086–1092 (2012).
Zerbino, D. & Birney, E. Velvet: Algorithms for De Novo brief learn meeting utilizing De Bruijn Graphs. Genome Res. gr.074492.107 (2008) https://doi.org/10.1101/gr.074492.107.
blastx: search protein databases utilizing a translated nucleotide question. https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome.
Quevillon, E. et al. InterProScan: Protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).
Li, H. & Durbin, R. Quick and correct brief learn alignment with Burrows-Wheeler rework. Bioinform. Oxf. Engl. 25, 1754–1760 (2009).
Stanke, M. & Morgenstern, B. AUGUSTUS: An internet server for gene prediction in eukaryotes that permits user-defined constraints. Nucleic Acids Res. 33, W465–W467 (2005).
Manchanda, N. et al. GenomeQC: A top quality evaluation instrument for genome assemblies and gene construction annotations. BMC Genomics 21, 193 (2020).
Goodwin, D. C. & Lee, S. B. Microwave miniprep of complete genomic DNA from fungi, crops, protists and animals for PCR. BioTechniques 15, 438, 441–2, 444 (1993).
Andrews, S. FastQC: A top quality management instrument for top throughput sequence knowledge. https://www.bioinformatics.babraham.ac.uk/initiatives/fastqc/ (2010).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A versatile trimmer for Illumina sequence knowledge. Bioinformatics 30, 2114–2120 (2014).
Chen, Ok.-T. et al. CSAR: A contig scaffolding instrument utilizing algebraic rearrangements. Bioinformatics 34, 109–111 (2018).
Blin, Ok. et al. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).
Medema, M. H. et al. antiSMASH: Speedy identification, annotation and evaluation of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39, W339–W346 (2011).
Khaldi, N. et al. SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet. Biol. FG B 47, 736–741 (2010).
El-Gebali, S. et al. The Pfam protein households database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
Apweiler, R. et al. UniProt: The common protein knowledgebase. Nucleic Acids Res. 32, D115–D119 (2004).
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, Ok. MEGA X: Molecular evolutionary genetics evaluation throughout computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
Thompson, J. D., Gibson, T. J. & Higgins, D. G. A number of sequence alignment utilizing ClustalW and ClustalX. Curr. Protoc. Bioinforma. 00, 2.3.1–2.3.22 (2003).
Vogel, H. J. A handy development medium for Neurosporacrassa. Microbial Genet. Bull. 13, 42–43 (1956).
Marshall, O. J. PerlPrimer: Cross-platform, graphical primer design for normal, bisulphite and real-time PCR. Bioinform. Oxf. Engl. 20, 2471–2472 (2004).
Pfaffl, M. W. A brand new mathematical mannequin for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29, e45 (2001).
Rueden, C. T. et al. Picture J2: ImageJ for the following era of scientific picture knowledge. BMC Bioinform 18, 529 (2017).