Sonntag, Juli 31, 2022
StartMicrobiologyCharacterization of NRPS and PKS genes concerned within the biosynthesis of SMs...

Characterization of NRPS and PKS genes concerned within the biosynthesis of SMs in Alternaria dauci together with the phytotoxic polyketide aldaulactone


  • Stergiopoulos, I., Collemare, J., Mehrabi, R. & Wit, P. J. Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol. Rev. 37, 67–93 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Pusztahelyi, T., Holb, I. J. & Pócsi, I. Secondary metabolites in fungus-plant interactions. Entrance. Plant Sci. 6, 573 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horbach, R., Navarro-Quesada, A. R., Knogge, W. & Deising, H. B. When and learn how to kill a plant cell: An infection methods of plant pathogenic fungi. J. Plant Physiol. 168, 51–62 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Walton, J. D. Host-selective toxins: Brokers of compatibility. Plant Cell 8, 1723–1733 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrov, V., Qureshi, M. Ok., Hille, J. & Gechev, T. Prevalence, biochemistry and organic results of host-selective plant mycotoxins. Meals Chem. Toxicol. 112, 251–264 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Möbius, N. & Hertweck, C. Fungal phytotoxins as mediators of virulence. Curr. Opin. Plant Biol. 12, 390–398 (2009).

    PubMed 

    Google Scholar
     

  • Wolpert, T. J., Dunkle, L. D. & Ciuffetti, L. M. Host-selective toxins and avirulence determinants: What’s in a Title?. Annu. Rev. Phytopathol. 40, 251–285 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Meena, M. & Samal, S. Alternaria host-specific (HSTs) toxins: An summary of chemical characterization, goal websites, regulation and their poisonous results. Toxicol. Rep. 6, 745–758 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turgeon, B. G. & Baker, S. E. Genetic and genomic dissection of the Cochliobolus heterostrophus Tox1 locus controlling biosynthesis of the polyketide virulence issue T-toxin. Adv. Genet. 57, 219–261 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Walton, J. D. HC-toxin. Phytochemistry 67, 1406–1413 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Wolpert, T. J. & Macko, V. Particular binding of victorin to a 100-kDa protein from oats. Proc. Natl. Acad. Sci. 86, 4092–4096 (1989).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keller, N. P., Turner, G. & Bennett, J. W. Fungal secondary metabolism—From biochemistry to genomics. Nat. Rev. Microbiol. 3, 937–947 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Brakhage, A. A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 11, 21–32 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Keller, N. P. Fungal secondary metabolism: Regulation, perform and drug discovery. Nat. Rev. Microbiol. 17, 167–180 (2018).


    Google Scholar
     

  • Shen, B. Polyketide biosynthesis past the sort I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 7, 285–295 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Staunton, J. & Weissman, Ok. J. Polyketide biosynthesis: A millennium overview. Nat. Prod. Rep. 18, 380–416 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Shimizu, Y., Ogata, H. & Goto, S. Kind III polyketide synthases: Useful classification and phylogenomics. ChemBioChem 18, 50–65 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Hashimoto, M., Nonaka, T. & Fujii, I. Fungal kind III polyketide synthases. Nat. Prod. Rep. 31, 1306–1317 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Robbins, T., Liu, Y.-C., Cane, D. E. & Khosla, C. Construction and mechanism of meeting line polyketide synthases. Curr. Opin. Struct. Biol. 41, 10–18 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herbst, D. A., Townsend, C. A. & Maier, T. The architectures of iterative kind I PKS and FAS. Nat. Prod. Rep. 35, 1046–1069 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hertweck, C. The biosynthetic logic of polyketide variety. Angew. Chem. Int. Ed. 48, 4688–4716 (2009).

    CAS 

    Google Scholar
     

  • Ahuja, M. et al. Illuminating the variety of fragrant polyketide synthases in Aspergillus nidulans. J. Am. Chem. Soc. 134, 8212–8221 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chooi, Y.-H., Cacho, R. & Tang, Y. Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum. Chem. Biol. 17, 483–494 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y., Xu, W. & Tang, Y. Classification, prediction, and verification of the regioselectivity of fungal polyketide synthase product template domains. J. Biol. Chem. 285, 22764–22773 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crawford, J. M. et al. Deconstruction of iterative multidomain polyketide synthase perform. Science 320, 243–246 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chooi, Y.-H. & Tang, Y. Navigating the fungal polyketide chemical house: From genes to molecules. J. Org. Chem. 77, 9933–9953 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Bioinformatical evaluation of the sequences, buildings and capabilities of fungal polyketide synthase product template domains. Sci. Rep. 5, 10463 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L., Zhang, Z., Shao, C.-L. & Wang, C.-Y. Evaluation of the sequences, buildings, and capabilities of product-releasing enzyme domains in fungal polyketide synthases. Entrance. Microbiol. 8, 1685 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, L. & Lou, L. PKS and NRPS launch mechanisms. Nat. Prod. Rep. 27, 255–278 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Reimer, J. M., Haque, A. S., Tarry, M. J. & Schmeing, T. M. Piecing collectively nonribosomal peptide synthesis. Curr. Opin. Struct. Biol. 49, 104–113 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • McErlean, M., Overbay, J. & Van Lanen, S. Refining and increasing nonribosomal peptide synthetase perform and mechanism. J. Ind. Microbiol. Biotechnol. 46, 493–513 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bushley, Ok. E. & Turgeon, B. G. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol. Biol. 10, 26 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yun, C.-S., Motoyama, T. & Osada, H. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS–PKS hybrid enzyme. Nat. Commun. 6, 8758 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Farrar, J. J., Pryor, B. M. & Davis, R. M. Alternaria ailments of carrot. Plant Dis. 88, 776–784 (2004).

    PubMed 

    Google Scholar
     

  • Ben-Midday, E., Shtienberg, D., Shlevin, E., Vintal, H. & Dinoor, A. Optimization of chemical suppression of Alternaria dauci, the causal agent of Alternaria leaf blight in carrots. Plant Dis. 85, 1149–1156 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Davis, R. M. Carrot ailments and their administration. in Ailments of Fruits and Greens Quantity I 397–439 (Springer, 2004).

  • Lecomte, M. et al. Partial resistance of carrot to Alternaria dauci correlates with in vitro cultured carrot cell resistance to fungal exudates. PLoS ONE 9, e101008 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meena, M. et al. Alternaria toxins: Potential virulence elements and genes associated to pathogenesis. Entrance. Microbiol. 8, 1451 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Courtial, J. et al. Aldaulactone—An authentic phytotoxic secondary metabolite concerned within the aggressiveness of Alternaria dauci on carrot. Entrance. Plant Sci. 9, 502 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barash, I., Mor, H., Netzer, D. & Kashman, Y. Manufacturing of zinniol by Alternaria dauci and its phytotoxic impact on carrot. Physiol. Plant Pathol. 19, 7-IN9 (1981).


    Google Scholar
     

  • Leyte-Lugo, M., Richomme, P., Poupard, P. & Peña-Rodriguez, L. M. Identification and quantification of a phytotoxic metabolite from Alternaria dauci. Molecules 25, 4003 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Pinto, V. E. F. & Patriarca, A. Alternaria Species and Their Related Mycotoxins. in Mycotoxigenic Fungi: Strategies and Protocols (eds. Moretti, A. & Susca, A.) 13–32 (Springer, New York, 2017). https://doi.org/10.1007/978-1-4939-6707-0_2.

  • Freeman, G. G. Isolation of alternariol and alternariol monomethyl ether from Alternaria dauci (kühn) groves and skolko. Phytochemistry 5, 719–725 (1966).

    CAS 

    Google Scholar
     

  • Wenderoth, M. et al. Alternariol as virulence and colonization issue of Alternaria alternata throughout plant an infection. Mol. Microbiol. 112, 131–146 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Qui, J. A., Castro-Concha, L. A., García-Sosa, Ok., Miranda-Ham, M. L. & Peña-Rodríguez, L. M. Is zinniol a real phytotoxin? Analysis of its exercise on the mobile degree in opposition to Tagetes erecta. J. Gen. Plant Pathol. 76, 94–101 (2010).

    CAS 

    Google Scholar
     

  • Zheng, L., Lv, R., Huang, J., Jiang, D. & Hsiang, T. Isolation, purification, and organic exercise of a phytotoxin produced by Stemphylium solani. Plant Dis. 94, 1231–1237 (2010).

    PubMed 

    Google Scholar
     

  • Cochrane, R. V. Ok. et al. Comparability of 10,11-dehydrocurvularin polyketide synthases from Alternaria cinerariae and Aspergillus terreus highlights key structural motifs. Chembiochem. Eur. J. Chem. Biol. 16, 2479–2483 (2015).

    CAS 

    Google Scholar
     

  • Kim, Y.-T. et al. Two completely different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol. Microbiol. 58, 1102–1113 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, X., Meehan, M. J., Xu, W., Dorrestein, P. C. & Tang, Y. Acyltransferase mediated polyketide launch from a fungal megasynthase. J. Am. Chem. Soc. 131, 8388–8389 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, H. et al. Enzymatic synthesis of resorcylic acid lactones by cooperation of fungal iterative polyketide synthases concerned in hypothemycin biosynthesis. J. Am. Chem. Soc. 132, 4530–4531 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reeves, C. D., Hu, Z., Reid, R. & Kealey, J. T. Genes for the biosynthesis of the fungal polyketides hypothemycin from Hypomyces subiculosus and radicicol from Pochonia chlamydosporia. Appl. Environ. Microbiol. 74, 5121–5129 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Useful characterization of the biosynthesis of radicicol, an Hsp90 inhibitor resorcylic acid lactone from Chaetomium chiversii. Chem. Biol. 15, 1328–1338 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Gaffoor, I. & Path, F. Characterization of two polyketide synthase genes concerned in zearalenone biosynthesis in Gibberella zeae. Appl. Environ. Microbiol. 72, 1793–1799 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horsman, M. E., Hari, T. P. A. & Boddy, C. N. Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: Logic gate or a sufferer of destiny?. Nat. Prod. Rep. 33, 183–202 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Dang, H. X., Pryor, B., Peever, T. & Lawrence, C. B. The Alternaria genomes database: A complete useful resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species. BMC Genomics 16, 1–9 (2015).

    CAS 

    Google Scholar
     

  • Zhang, S. V., Zhuo, L. & Hahn, M. W. AGOUTI: bettering genome meeting and annotation utilizing transcriptome knowledge. GigaScience 5, s13742-016 (2016).


    Google Scholar
     

  • Wolters, P. J. et al. Gapless genome meeting of the potato and tomato early blight pathogen Alternaria solani. Mol. Plant. Microbe Work together. 31, 692–694 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Ok.-T. & Lu, C. L. CSAR-web: An internet server of contig scaffolding utilizing algebraic rearrangements. Nucleic Acids Res. 46, W55–W59 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oide, S. et al. NPS6, encoding a nonribosomal peptide synthetase concerned in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18, 2836–2853 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroken, S., Glass, N. L., Taylor, J. W., Yoder, O. C. & Turgeon, B. G. Phylogenomic evaluation of kind I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc. Natl. Acad. Sci. 100, 15670–15675 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boedo, C. et al. Evaluating aggressiveness and host vary of Alternaria dauci in a managed atmosphere: Evaluating aggressiveness and host vary of Alternaria dauci. Plant Pathol. 61, 63–75 (2012).

    CAS 

    Google Scholar
     

  • Lou, J., Fu, L., Peng, Y. & Zhou, L. Metabolites from Alternaria fungi and their bioactivities. Molecules 18, 5891–5935 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noar, R. D. & Daub, M. E. Bioinformatics prediction of polyketide synthase gene clusters from Mycosphaerella fijiensis. PLoS ONE 11, e0158471 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen, B., Dongo, A. & Pryor, B. M. Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila. Mycol. Res. 112, 241–250 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Kimura, N. & Tsuge, T. Gene cluster concerned in melanin biosynthesis of the filamentous fungus Alternaria alternata. J. Bacteriol. 175, 4427–4435 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y.-H. et al. Putative nonribosomal peptide synthetase and cytochrome P450 genes answerable for tentoxin biosynthesis in Alternaria alternata ZJ33. Toxins 8, 234 (2016).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Boedo, C. et al. Influence of carrot resistance on growth of the Alternaria leaf blight pathogen (Alternaria dauci). Eur. J. Plant Pathol. 121, 55–66 (2008).


    Google Scholar
     

  • Kjærbølling, I., Mortensen, U. H., Vesth, T. & Andersen, M. R. Methods to determine the hyperlink between biosynthetic gene clusters and secondary metabolites. Fungal Genet. Biol. 130, 107–121 (2019).

    PubMed 

    Google Scholar
     

  • Macheleidt, J. et al. Regulation and position of fungal secondary metabolites. Annu. Rev. Genet. 50, 371–392 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Pfannenstiel, B. T. & Keller, N. P. On high of biosynthetic gene clusters: How epigenetic equipment influences secondary metabolism in fungi. Biotechnol. Adv. 37, 107345 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C.-Y. et al. Pure merchandise growth underneath epigenetic modulation in fungi. Phytochem. Rev. https://doi.org/10.1007/s11101-020-09684-7 (2020).

    Article 

    Google Scholar
     

  • Xu, Y. et al. Characterization of the biosynthetic genes for 10, 11-dehydrocurvularin, a warmth shock response-modulating anticancer fungal polyketide from Aspergillus terreus. Appl. Environ. Microbiol. 79, 2038–2047 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iacomi-Vasilescu, B. et al. In vitro fungicide sensitivity of Alternaria species pathogenic to crucifers and identification of Alternaria brassicicola subject isolates extremely proof against each dicarboximides and phenylpyrroles. Crop Prot. 23, 481–488 (2004).

    CAS 

    Google Scholar
     

  • Belmas, E. et al. Genome sequence of the necrotrophic plant pathogen Alternaria brassicicola Abra43. Genome Announc. 6, e01559-17 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulz, M. H., Zerbino, D. R., Vingron, M. & Birney, E. Oases: Strong de novo RNA-seq meeting throughout the dynamic vary of expression ranges. Bioinform. Oxf. Engl. 28, 1086–1092 (2012).

    CAS 

    Google Scholar
     

  • Zerbino, D. & Birney, E. Velvet: Algorithms for De Novo brief learn meeting utilizing De Bruijn Graphs. Genome Res. gr.074492.107 (2008) https://doi.org/10.1101/gr.074492.107.

  • blastx: search protein databases utilizing a translated nucleotide question. https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome.

  • Quevillon, E. et al. InterProScan: Protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Quick and correct brief learn alignment with Burrows-Wheeler rework. Bioinform. Oxf. Engl. 25, 1754–1760 (2009).

    CAS 

    Google Scholar
     

  • Stanke, M. & Morgenstern, B. AUGUSTUS: An internet server for gene prediction in eukaryotes that permits user-defined constraints. Nucleic Acids Res. 33, W465–W467 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manchanda, N. et al. GenomeQC: A top quality evaluation instrument for genome assemblies and gene construction annotations. BMC Genomics 21, 193 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodwin, D. C. & Lee, S. B. Microwave miniprep of complete genomic DNA from fungi, crops, protists and animals for PCR. BioTechniques 15, 438, 441–2, 444 (1993).

  • Andrews, S. FastQC: A top quality management instrument for top throughput sequence knowledge. https://www.bioinformatics.babraham.ac.uk/initiatives/fastqc/ (2010).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A versatile trimmer for Illumina sequence knowledge. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Ok.-T. et al. CSAR: A contig scaffolding instrument utilizing algebraic rearrangements. Bioinformatics 34, 109–111 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Blin, Ok. et al. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medema, M. H. et al. antiSMASH: Speedy identification, annotation and evaluation of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39, W339–W346 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khaldi, N. et al. SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet. Biol. FG B 47, 736–741 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • El-Gebali, S. et al. The Pfam protein households database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Apweiler, R. et al. UniProt: The common protein knowledgebase. Nucleic Acids Res. 32, D115–D119 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, Ok. MEGA X: Molecular evolutionary genetics evaluation throughout computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, J. D., Gibson, T. J. & Higgins, D. G. A number of sequence alignment utilizing ClustalW and ClustalX. Curr. Protoc. Bioinforma. 00, 2.3.1–2.3.22 (2003).

  • Vogel, H. J. A handy development medium for Neurosporacrassa. Microbial Genet. Bull. 13, 42–43 (1956).


    Google Scholar
     

  • Marshall, O. J. PerlPrimer: Cross-platform, graphical primer design for normal, bisulphite and real-time PCR. Bioinform. Oxf. Engl. 20, 2471–2472 (2004).

    CAS 

    Google Scholar
     

  • Pfaffl, M. W. A brand new mathematical mannequin for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29, e45 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rueden, C. T. et al. Picture J2: ImageJ for the following era of scientific picture knowledge. BMC Bioinform 18, 529 (2017).


    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments