Tran, C., Cock, I. E., Chen, X. & Feng, Y. Antimicrobial Bacillus: Metabolites and their mode of motion. Antibiotics (Basel). 11(1), 88 (2022).
Zhang, Q., Kobras, C. M., Gebhard, S., Mascher, T. & Wolf, D. Regulation of heterologous subtilin manufacturing in Bacillus subtilis W168. Microb Cell Truth. 21(1), 57 (2022).
Karagiota, A., Tsitsopoulou, H., Tasakis, R. N., Zoumpourtikoudi, V. & Touraki, M. Characterization and quantitative willpower of a various group of Bacillus subtilis subsp. subtilis NCIB 3610 antibacterial peptides. Probiotics Antimicrob. Proteins. 13(2), 555–570 (2021).
Li, J., Chen, J., Yang, G. & Tao, L. Sublancin protects towards methicillin-resistant Staphylococcus aureus an infection by the mixed modulation of innate immune response and microbiota. Peptides 141, 170533 (2021).
Danevčič, T. et al. Surfactin facilitates horizontal gene switch in Bacillus subtilis. Entrance Microbiol. 12, 657407 (2021).
Al-Ajlani, M. M., Sheikh, M. A., Ahmad, Z. & Hasnain, S. Manufacturing of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia industrial medium. Microb. Cell Truth. 5(6), 17 (2007).
Yu, C. et al. Mycosubtilin Produced by Bacillus subtilis ATCC6633 Inhibits Development and Mycotoxin Biosynthesis of Fusarium graminearum and Fusarium verticillioides. Toxins (Basel) 13(11), 791 (2021).
Gao, W. et al. Manufacturing of fengycin from D-xylose by means of the expression and metabolic regulation of the Dahms pathway. Appl. Microbiol. Biotechnol. 106(7), 2557–2567 (2022).
Tojo, S., Tanaka, Y. & Ochi, Okay. Activation of antibiotic manufacturing in Bacillus spp. by cumulative drug resistance mutations. Antimicrob. Brokers Chemother. 59(12), 7799–804 (2015).
Saito, N., Nguyen, H. M. & Inaoka, T. Impression of activation of neotrehalosadiamine/kanosamine biosynthetic pathway on the metabolism of Bacillus subtilis. J Bacteriol. 203(9), e00603-e620 (2021).
Théatre, A., Hoste, A. C. R., Rigolet, A., Benneceur, I., Bechet, M., Ongena, M., Deleu, M. & Jacques, P., Bacillus sp.: A exceptional supply of bioactive lipopeptides, in Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2021_182 (2022).
Kaspar, F., Neubauer, P. & Gimpel, M. Bioactive secondary metabolites from Bacillus subtilis: A complete assessment. J. Nat. Prod. 82(7), 2038–2053 (2019).
Marx, R., Stein, T., Entian, Okay.-D. & Glaser, S. J. Construction of the Bacillus subtilis peptide antibiotic subtilosin A decided by 1H-NMR and matrix assisted laser desorption/ ionization time-of-flight mass spectrometry. J. Protein Chem. 20, 501–506 (2001).
Kawulka, Okay. E. et al. Construction of Subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with uncommon sulfur to R-carbon cross-links: Formation and discount of R-Thio-R-Amino acid derivatives. Biochemistry 43, 3385–3395 (2004).
Barbosa, J. C. et al. Insights into the mode of motion of the two-peptide lantibiotic lichenicidin. Colloids Surf. B Biointerfaces. 211, 112308 (2022).
Himes, P. M., Allen, S. E., Hwang, S. & Bowers, A. A. Manufacturing of Sactipeptides in Escherichia coli: Probing the substrate promiscuity of Subtilosin A biosynthesis. ACS Chem. Biol. 11(6), 1737–1744 (2016).
Zheng, G., Yan, L. Z., Vederas, J. C. & Zuber, P. Genes of the sbo-alb locus of Bacillus subtilis are required for manufacturing of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181, 7346–7355 (1999).
Yu, W. Q. et al. Draft genome sequence, disease-resistance genes, and phenotype of a Paenibacillus terrae pressure (NK3-4) with the potential to regulate plant illnesses. Genome 61(10), 725–734 (2018).
Cavera, V. L., Volski, A. & Chikindas, M. L. The Pure Antimicrobial Subtilosin A Synergizes with Lauramide Arginine Ethyl Ester (LAE), ε-Poly-L-lysine (Polylysine), Clindamycin Phosphate and Metronidazole, In opposition to the Vaginal Pathogen Gardnerella vaginalis. Probiotics Antimicrob. Proteins 7(2), 164–171 (2015).
Sundara Rajan, S. et al. Polyethylene glycol-based hydrogels for managed launch of the antimicrobial subtilosin for prophylaxis of bacterial vaginosis. Antimicrob. Brokers Chemother. 58(5), 2747–2753 (2014).
Quintana, V. M. et al. Antiherpes simplex virus kind 2 exercise of the antimicrobial peptide subtilosin. J. Appl. Microbiol. 117(5), 1253–1259 (2014).
Velho, R. V., Basso, A. P., Segalin, J., Costa-Medina, L. F. & Brandelli, A. The presence of sboA and spaS genes and antimicrobial peptides subtilosin A and subtilin amongst Bacillus strains of the Amazon basin. Genet. Mol. Biol. 36(1), 101–104 (2013).
Zheng, G., Hehn, R. & Zuber, P. Mutational evaluation of the sbo-albsbo-alb locus of Bacillus subtilis: Identification of genes required for subtilosin manufacturing and immunity. J. Bacteriol. 182, 3266–3273 (2000).
Zheng, G., Yan, L. Z., Vederas, J. C. & Zuber, P. Genes of the sbo-alb locus of Bacillus subtilis are required for manufacturing of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181, 7346–7355 (1999).
Nakano, M. M., Zheng, G. & Zuber, P. Twin management of sbo-alb operon expression by the Spo0 and ResDE techniques of sign transduction below anaerobic situations in Bacillus subtilis. J. Bacteriol. 182(11), 3274–3277 (2000).
Celandroni, F. et al. Identification of Bacillus species: Implication on the standard of probiotic formulations. PLOS ONE 14(5), e0217021 (2019).
Orthuber, W. Data is choice: A assessment of fundamentals exhibits substantial potential for enchancment of digital info illustration. Int. J. Environ. Res. Public Well being 17(8), 2975 (2020).
Patel, S. & Gupta, R. S. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 70(1), 406–438 (2020).
Savi, D. C., Aluizio, R., Galli-Terasawa, L., Kava, V. & Glienke, C. 16S-gyrB-rpoB multilocus sequence evaluation for species identification within the genus Microbispora. Antonie Van Leeuwenhoek 109(6), 801–815 (2016).
Locher, Okay. et al. Automated 16S sequencing utilizing an R-based evaluation module for bacterial identification. Microbiol Spectr. 11, e0040822 (2022).
Nakamura, L. Okay., Roberts, M. S. & Cohan, F. M. Relationship of Bacillus subtilis clades related to strains 168 and W23: A proposal for Bacillus subtilis subsp. subtilis subsp. nov and Bacillus subtilis subsp. spizizenii subsp. nov. Int. J. Syst. Bacteriol. 49, 1211–1215 (1999).
Stein, T., Düsterhus, S., Stroh, A. & Entian, Okay.-D. Subtilosin manufacturing by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl. Environ. Microbiol. 70, 2349–2353 (2004).
Alajlani, M., Shiekh, A., Hasnain, S., Brantner, A. Purification of bioactive lipopeptides produced by Bacillus subtilis pressure BIA. Chromatographia 79, 1527–1532 (2016).
Al-Ajlani, M. M. & Hasnain, S. Antagonistic exercise towards nosocomial scientific isolates with Bacillus subtilis MZ-7. Ann. Microbiol. 57, 419–424 (2007).
Church, D. L. et al. Efficiency and software of 16S rRNA gene cycle sequencing for routine identification of micro organism within the scientific microbiology laboratory. Clin. Microbiol. Rev. 33(4), e00053-e00119 (2020).
Chevrette, M. G., Himes, B. W. & Carlos-Shanley, C. Nutrient availability shifts the biosynthetic potential of soil-derived microbial communities. Curr. Microbiol. 79(2), 64 (2022).
Popp, P. F. et al. The epipeptide biosynthesis locus epeXEPAB is extensively distributed in Firmicutes and triggers intrinsic cell envelope stress. Microb. Physiol. 31(3), 306–318 (2021).
Nechitaylo, T. Y. et al. Incipient genome erosion and metabolic streamlining for antibiotic manufacturing in a defensive symbiont. Proc. Natl. Acad. Sci. USA 118(17), e2023047118 (2021).
Algburi, A. et al. Subtilosin prevents biofilm formation by inhibiting bacterial quorum sensing. Probiotics Antimicrob. Proteins 9(1), 81–90 (2017).
Thennarasu, S. et al. Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A. Chem. Phys. Lipids 137(1–2), 38–51 (2005).
Stein, T. Oxygen-limiting development situations and deletion of the transition state regulator protein Abrb in Bacillus subtilis 6633 end in a rise in Subtilosin manufacturing and a lower in Subtilin manufacturing. Probiotics Antimicrob. Proteins 12(2), 725–731 (2020).
Kalamara, M. & Stanley-Wall, N. R. The intertwined roles of specialised metabolites inside the Bacillus subtilis biofilm. J. Bacteriol. 203(22), e0043121 (2021).
Dworkin, J. Anaerobiosis: A surfactant helps micro organism breathe a sigh of reduction. Curr Biol. 30(6), R278–R280 (2020).
Reuß, D. R., Schuldes, J., Daniel, R. & Altenbuchner, J. Full genome sequence of Bacillus subtilis subsp. subtilis pressure 3NA. Genome Announc. 3(2), e00084-15 (2015).
Pedreira, T., Elfmann, C. & Stülke, J. The present state of SubtiWiki, the database for the mannequin organism Bacillus subtilis. Nucleic Acids Res. 50(D1), D875–D882 (2022).
Sonbarse, P. P., Kiran, Okay., Sharma, P. & Parvatam, G. Biochemical and molecular insights of PGPR software for the augmentation of carotenoids, tocopherols, and folate within the foliage of Moringa oleifera. Phytochemistry 179, 112506 (2020).