Donnerstag, Juni 23, 2022
StartMicrobiologyCharacterization of subtilosin gene in wild kind Bacillus spp. and doable physiological...

Characterization of subtilosin gene in wild kind Bacillus spp. and doable physiological function


  • Tran, C., Cock, I. E., Chen, X. & Feng, Y. Antimicrobial Bacillus: Metabolites and their mode of motion. Antibiotics (Basel). 11(1), 88 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, Q., Kobras, C. M., Gebhard, S., Mascher, T. & Wolf, D. Regulation of heterologous subtilin manufacturing in Bacillus subtilis W168. Microb Cell Truth. 21(1), 57 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Karagiota, A., Tsitsopoulou, H., Tasakis, R. N., Zoumpourtikoudi, V. & Touraki, M. Characterization and quantitative willpower of a various group of Bacillus subtilis subsp. subtilis NCIB 3610 antibacterial peptides. Probiotics Antimicrob. Proteins. 13(2), 555–570 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, J., Chen, J., Yang, G. & Tao, L. Sublancin protects towards methicillin-resistant Staphylococcus aureus an infection by the mixed modulation of innate immune response and microbiota. Peptides 141, 170533 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Danevčič, T. et al. Surfactin facilitates horizontal gene switch in Bacillus subtilis. Entrance Microbiol. 12, 657407 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Al-Ajlani, M. M., Sheikh, M. A., Ahmad, Z. & Hasnain, S. Manufacturing of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia industrial medium. Microb. Cell Truth. 5(6), 17 (2007).

    Article 

    Google Scholar
     

  • Yu, C. et al. Mycosubtilin Produced by Bacillus subtilis ATCC6633 Inhibits Development and Mycotoxin Biosynthesis of Fusarium graminearum and Fusarium verticillioides. Toxins (Basel) 13(11), 791 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Gao, W. et al. Manufacturing of fengycin from D-xylose by means of the expression and metabolic regulation of the Dahms pathway. Appl. Microbiol. Biotechnol. 106(7), 2557–2567 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tojo, S., Tanaka, Y. & Ochi, Okay. Activation of antibiotic manufacturing in Bacillus spp. by cumulative drug resistance mutations. Antimicrob. Brokers Chemother. 59(12), 7799–804 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Saito, N., Nguyen, H. M. & Inaoka, T. Impression of activation of neotrehalosadiamine/kanosamine biosynthetic pathway on the metabolism of Bacillus subtilis. J Bacteriol. 203(9), e00603-e620 (2021).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Théatre, A., Hoste, A. C. R., Rigolet, A., Benneceur, I., Bechet, M., Ongena, M., Deleu, M. & Jacques, P., Bacillus sp.: A exceptional supply of bioactive lipopeptides, in Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2021_182 (2022).

  • Kaspar, F., Neubauer, P. & Gimpel, M. Bioactive secondary metabolites from Bacillus subtilis: A complete assessment. J. Nat. Prod. 82(7), 2038–2053 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marx, R., Stein, T., Entian, Okay.-D. & Glaser, S. J. Construction of the Bacillus subtilis peptide antibiotic subtilosin A decided by 1H-NMR and matrix assisted laser desorption/ ionization time-of-flight mass spectrometry. J. Protein Chem. 20, 501–506 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kawulka, Okay. E. et al. Construction of Subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with uncommon sulfur to R-carbon cross-links: Formation and discount of R-Thio-R-Amino acid derivatives. Biochemistry 43, 3385–3395 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barbosa, J. C. et al. Insights into the mode of motion of the two-peptide lantibiotic lichenicidin. Colloids Surf. B Biointerfaces. 211, 112308 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Himes, P. M., Allen, S. E., Hwang, S. & Bowers, A. A. Manufacturing of Sactipeptides in Escherichia coli: Probing the substrate promiscuity of Subtilosin A biosynthesis. ACS Chem. Biol. 11(6), 1737–1744 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng, G., Yan, L. Z., Vederas, J. C. & Zuber, P. Genes of the sbo-alb locus of Bacillus subtilis are required for manufacturing of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181, 7346–7355 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yu, W. Q. et al. Draft genome sequence, disease-resistance genes, and phenotype of a Paenibacillus terrae pressure (NK3-4) with the potential to regulate plant illnesses. Genome 61(10), 725–734 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cavera, V. L., Volski, A. & Chikindas, M. L. The Pure Antimicrobial Subtilosin A Synergizes with Lauramide Arginine Ethyl Ester (LAE), ε-Poly-L-lysine (Polylysine), Clindamycin Phosphate and Metronidazole, In opposition to the Vaginal Pathogen Gardnerella vaginalis. Probiotics Antimicrob. Proteins 7(2), 164–171 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sundara Rajan, S. et al. Polyethylene glycol-based hydrogels for managed launch of the antimicrobial subtilosin for prophylaxis of bacterial vaginosis. Antimicrob. Brokers Chemother. 58(5), 2747–2753 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Quintana, V. M. et al. Antiherpes simplex virus kind 2 exercise of the antimicrobial peptide subtilosin. J. Appl. Microbiol. 117(5), 1253–1259 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Velho, R. V., Basso, A. P., Segalin, J., Costa-Medina, L. F. & Brandelli, A. The presence of sboA and spaS genes and antimicrobial peptides subtilosin A and subtilin amongst Bacillus strains of the Amazon basin. Genet. Mol. Biol. 36(1), 101–104 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zheng, G., Hehn, R. & Zuber, P. Mutational evaluation of the sbo-albsbo-alb locus of Bacillus subtilis: Identification of genes required for subtilosin manufacturing and immunity. J. Bacteriol. 182, 3266–3273 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zheng, G., Yan, L. Z., Vederas, J. C. & Zuber, P. Genes of the sbo-alb locus of Bacillus subtilis are required for manufacturing of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181, 7346–7355 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nakano, M. M., Zheng, G. & Zuber, P. Twin management of sbo-alb operon expression by the Spo0 and ResDE techniques of sign transduction below anaerobic situations in Bacillus subtilis. J. Bacteriol. 182(11), 3274–3277 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Celandroni, F. et al. Identification of Bacillus species: Implication on the standard of probiotic formulations. PLOS ONE 14(5), e0217021 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Orthuber, W. Data is choice: A assessment of fundamentals exhibits substantial potential for enchancment of digital info illustration. Int. J. Environ. Res. Public Well being 17(8), 2975 (2020).

    PubMed Central 
    Article 

    Google Scholar
     

  • Patel, S. & Gupta, R. S. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 70(1), 406–438 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Savi, D. C., Aluizio, R., Galli-Terasawa, L., Kava, V. & Glienke, C. 16S-gyrB-rpoB multilocus sequence evaluation for species identification within the genus Microbispora. Antonie Van Leeuwenhoek 109(6), 801–815 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Locher, Okay. et al. Automated 16S sequencing utilizing an R-based evaluation module for bacterial identification. Microbiol Spectr. 11, e0040822 (2022).

    Article 

    Google Scholar
     

  • Nakamura, L. Okay., Roberts, M. S. & Cohan, F. M. Relationship of Bacillus subtilis clades related to strains 168 and W23: A proposal for Bacillus subtilis subsp. subtilis subsp. nov and Bacillus subtilis subsp. spizizenii subsp. nov. Int. J. Syst. Bacteriol. 49, 1211–1215 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stein, T., Düsterhus, S., Stroh, A. & Entian, Okay.-D. Subtilosin manufacturing by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl. Environ. Microbiol. 70, 2349–2353 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alajlani, M., Shiekh, A., Hasnain, S., Brantner, A. Purification of bioactive lipopeptides produced by Bacillus subtilis pressure BIA. Chromatographia 79, 1527–1532 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Al-Ajlani, M. M. & Hasnain, S. Antagonistic exercise towards nosocomial scientific isolates with Bacillus subtilis MZ-7. Ann. Microbiol. 57, 419–424 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Church, D. L. et al. Efficiency and software of 16S rRNA gene cycle sequencing for routine identification of micro organism within the scientific microbiology laboratory. Clin. Microbiol. Rev. 33(4), e00053-e00119 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chevrette, M. G., Himes, B. W. & Carlos-Shanley, C. Nutrient availability shifts the biosynthetic potential of soil-derived microbial communities. Curr. Microbiol. 79(2), 64 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Popp, P. F. et al. The epipeptide biosynthesis locus epeXEPAB is extensively distributed in Firmicutes and triggers intrinsic cell envelope stress. Microb. Physiol. 31(3), 306–318 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Nechitaylo, T. Y. et al. Incipient genome erosion and metabolic streamlining for antibiotic manufacturing in a defensive symbiont. Proc. Natl. Acad. Sci. USA 118(17), e2023047118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Algburi, A. et al. Subtilosin prevents biofilm formation by inhibiting bacterial quorum sensing. Probiotics Antimicrob. Proteins 9(1), 81–90 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thennarasu, S. et al. Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A. Chem. Phys. Lipids 137(1–2), 38–51 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stein, T. Oxygen-limiting development situations and deletion of the transition state regulator protein Abrb in Bacillus subtilis 6633 end in a rise in Subtilosin manufacturing and a lower in Subtilin manufacturing. Probiotics Antimicrob. Proteins 12(2), 725–731 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kalamara, M. & Stanley-Wall, N. R. The intertwined roles of specialised metabolites inside the Bacillus subtilis biofilm. J. Bacteriol. 203(22), e0043121 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Dworkin, J. Anaerobiosis: A surfactant helps micro organism breathe a sigh of reduction. Curr Biol. 30(6), R278–R280 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reuß, D. R., Schuldes, J., Daniel, R. & Altenbuchner, J. Full genome sequence of Bacillus subtilis subsp. subtilis pressure 3NA. Genome Announc. 3(2), e00084-15 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pedreira, T., Elfmann, C. & Stülke, J. The present state of SubtiWiki, the database for the mannequin organism Bacillus subtilis. Nucleic Acids Res. 50(D1), D875–D882 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sonbarse, P. P., Kiran, Okay., Sharma, P. & Parvatam, G. Biochemical and molecular insights of PGPR software for the augmentation of carotenoids, tocopherols, and folate within the foliage of Moringa oleifera. Phytochemistry 179, 112506 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments