Ferguson, N., Anderson, R. & Gupta, S. The impact of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proc. Natl. Acad. Sci. U.S.A. 96, 790–794 (1999).
Altizer, S. et al. Seasonality and the dynamics of infectious illnesses. Ecol. Lett. 9, 467–484. https://doi.org/10.1111/j.1461-0248.2005.00879.x (2006).
Hope-Simpson, R. E. The position of season within the epidemiology of influenza. J. Hyg. 86, 35–47 (1981).
Tamerius, J. et al. World influenza seasonality: Reconciling patterns throughout temperate and tropical areas. Environ. Well being Perspect. 119, 439–445. https://doi.org/10.1289/ehp.1002383 (2011).
Viboud, C. et al. Synchrony, waves, and spatial hierarchies within the unfold of influenza. Science 312, 447–451. https://doi.org/10.1126/science.1125237 (2006).
Dushoff, J., Plotkin, J. B., Levin, S. A. & Earn, D. J. Dynamical resonance can account for seasonality of influenza epidemics. Proc. Natl. Acad. Sci. U.S.A. 101, 16915–16916. https://doi.org/10.1073/pnas.0407293101 (2004).
Shaman, J., Pitzer, V. E., Viboud, C., Grenfell, B. T. & Lipsitch, M. Absolute humidity and the seasonal onset of influenza within the continental United States. PLoS Biol. 8, e1000316. https://doi.org/10.1371/journal.pbio.1000316 (2010).
Cannell, J. J., Zasloff, M., Garland, C. F., Scragg, R. & Giovannucci, E. On the epidemiology of influenza. Virol. J. 5, 29. https://doi.org/10.1186/1743-422X-5-29 (2008).
Bedford, T. et al. World circulation patterns of seasonal influenza viruses fluctuate with antigenic drift. Nature 523, 217–220. https://doi.org/10.1038/nature14460 (2015).
Foley, D. A. et al. Inspecting the interseasonal resurgence of respiratory syncytial virus in Western Australia. Arch. Dis. Youngster https://doi.org/10.1136/archdischild-2021-322507 (2021).
Yeoh, D. Okay. et al. Impression of coronavirus illness 2019 public well being measures on detections of influenza and respiratory syncytial virus in kids throughout the 2020 Australian winter. Clin. Infect. Dis. 72, 2199–2202. https://doi.org/10.1093/cid/ciaa1475 (2021).
Ferguson, N. M., Galvani, A. P. & Bush, R. M. Ecological and immunological determinants of influenza evolution. Nature 422, 428–433. https://doi.org/10.1038/nature01509 (2003).
Zhang, X. S. Pressure interactions as a mechanism for dominant pressure alternation and incidence oscillation in infectious illnesses: Seasonal influenza as a case examine. PLoS One 10, e0142170. https://doi.org/10.1371/journal.pone.0142170 (2015).
Wu, A., Mihaylova, V., Landry, M. & Foxman, E. Interference between rhinovirus and influenza A virus: A scientific information evaluation and experimental an infection examine. Lancet Microbe 1, 254–262. https://doi.org/10.1016/S2666-5247(20)30114-2 (2020).
Nickbakhsh, S. et al. Virus-virus interactions impression the inhabitants dynamics of influenza and the widespread chilly. Proc. Natl. Acad. Sci. U.S.A. https://doi.org/10.1073/pnas.1911083116 (2019).
Fox, S. J., Miller, J. C. & Meyers, L. A. Seasonality in threat of pandemic influenza emergence. PLoS Comput. Biol. 13, e1005749. https://doi.org/10.1371/journal.pcbi.1005749 (2017).
Fitch, W. M., Leiter, J. M., Li, X. Q. & Palese, P. Optimistic Darwinian evolution in human influenza A viruses. Proc. Natl. Acad. Sci. U.S.A. 88, 4270–4274 (1991).
Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376. https://doi.org/10.1126/science.1097211 (2004).
Epstein, S. L. & Worth, G. E. Cross-protective immunity to influenza A viruses. Skilled Rev. Vaccines 9, 1325–1341. https://doi.org/10.1586/erv.10.123 (2010).
Barry, J. M., Viboud, C. & Simonsen, L. Cross-protection between successive waves of the 1918–1919 influenza pandemic: Epidemiological proof from US Military camps and from Britain. J. Infect. Dis. 198, 1427–1434. https://doi.org/10.1086/592454 (2008).
Finkelman, B. S. et al. World patterns in seasonal exercise of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: Viral coexistence and latitudinal gradients. PLoS One 2, e1296. https://doi.org/10.1371/journal.pone.0001296 (2007).
Flannery, B. et al. Unfold of antigenically drifted influenza A(H3N2) viruses and vaccine effectiveness in america throughout the 2018–2019 season. J. Infect. Dis. 221, 8–15. https://doi.org/10.1093/infdis/jiz543 (2020).
Bouckaert, R. et al. BEAST 2: A software program platform for Bayesian evolutionary evaluation. PLoS Comput Biol 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).
Stadler, T., Kuhnert, D., Bonhoeffer, S. & Drummond, A. J. Start-death skyline plot reveals temporal adjustments of epidemic unfold in HIV and hepatitis C virus (HCV). Proc. Natl. Acad. Sci. U.S.A. 110, 228–233. https://doi.org/10.1073/pnas.1207965110 (2013).
Advantageous, P., Eames, Okay. & Heymann, D. L. “Herd immunity”: A tough information. Clin. Infect. Dis. 52, 911–916. https://doi.org/10.1093/cid/cir007 (2011).
Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332. https://doi.org/10.1126/science.1090727 (2004).
Andreasen, V. Dynamics of annual influenza A epidemics with immuno-selection. J. Math. Biol. 46, 504–536. https://doi.org/10.1007/s00285-002-0186-2 (2003).
te Beest, D. E., van Boven, M., Hooiveld, M., van den Dool, C. & Wallinga, J. Driving elements of influenza transmission within the Netherlands. Am. J. Epidemiol. 178, 1469–1477. https://doi.org/10.1093/aje/kwt132 (2013).
Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H. & Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 by means of the postpandemic interval. Science 368, 860–868. https://doi.org/10.1126/science.abb5793 (2020).
Sridhar, S. et al. Mobile immune correlates of safety towards symptomatic pandemic influenza. Nat. Med. 19, 1305–1312. https://doi.org/10.1038/nm.3350 (2013).
Sridhar, S. et al. Predominance of heterosubtypic IFN-gamma-only-secreting effector reminiscence T cells in pandemic H1N1 naive adults. Eur. J. Immunol. 42, 2913–2924. https://doi.org/10.1002/eji.201242504 (2012).
Seibert, C. W. et al. Recombinant IgA is ample to forestall influenza virus transmission in guinea pigs. J. Virol. 87, 7793–7804. https://doi.org/10.1128/JVI.00979-13 (2013).
Edridge, A. et al. Coronavirus protecting immunity is short-lasting. Nat. Med. 26, 1691–1693 (2020).
Braun, J. et al. SARS-CoV-2-reactive T cells in wholesome donors and sufferers with COVID-19. Nature 587, 270–274. https://doi.org/10.1038/s41586-020-2598-9 (2020).
Rossen, R. D. et al. The proteins in nasal secretion. II. A longitudinal examine of IgA and neutralizing antibody ranges in nasal washings from males contaminated with influenza virus. JAMA 211, 1157–1161 (1970).
Gould, V. M. W. et al. Nasal IgA gives safety towards human influenza problem in volunteers with low serum influenza antibody titre. Entrance. Microbiol. 8, 900. https://doi.org/10.3389/fmicb.2017.00900 (2017).
Renegar, Okay. B., Small, P. A. Jr., Boykins, L. G. & Wright, P. F. Function of IgA versus IgG within the management of influenza viral an infection within the murine respiratory tract. J. Immunol. 173, 1978–1986 (2004).
Petrova, V. N. & Russell, C. A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 16, 60. https://doi.org/10.1038/nrmicro.2017.146 (2018).
Miller, M. S. et al. Neutralizing antibodies towards beforehand encountered influenza virus strains improve over time: A longitudinal evaluation. Sci. Transl. Med. 5, 198ra107. https://doi.org/10.1126/scitranslmed.3006637 (2013).
Maurer, M. A. et al. Glycosylation of human IgA immediately inhibits influenza A and different sialic-acid-binding viruses. Cell Rep. 23, 90–99. https://doi.org/10.1016/j.celrep.2018.03.027 (2018).
Bhattacharyya, S., Gesteland, P. H., Korgenski, Okay., Bjornstad, O. N. & Adler, F. R. Cross-immunity between strains explains the dynamical sample of paramyxoviruses. Proc. Natl. Acad. Sci. U.S.A. 112, 13396–13400. https://doi.org/10.1073/pnas.1516698112 (2015).
Metcalf, C. J. et al. Use of serological surveys to generate key insights into the altering world panorama of infectious illness. Lancet 388, 728–730. https://doi.org/10.1016/S0140-6736(16)30164-7 (2016).
van der Vries, E. et al. Outcomes and susceptibility to neuraminidase inhibitors in people contaminated with totally different influenza B lineages: The influenza resistance data examine. J. Infect. Dis. 213, 183–190. https://doi.org/10.1093/infdis/jiv375 (2016).
Whitley, R. J. et al. World evaluation of resistance to neuraminidase inhibitors, 2008–2011: The Influenza Resistance Data Examine (IRIS). Clin. Infect. Dis. 56, 1197–1205. https://doi.org/10.1093/cid/cis1220 (2013).
van der Vries, E. et al. Molecular assays for quantitative and qualitative detection of influenza virus and oseltamivir resistance mutations. J. Mol. Diagn. 15, 347–354. https://doi.org/10.1016/j.jmoldx.2012.11.007 (2013).
Squires, R. B. et al. Influenza analysis database: An built-in bioinformatics useful resource for influenza analysis and surveillance. Influenza Different Respir. Viruses 6, 404–416. https://doi.org/10.1111/j.1750-2659.2011.00331.x (2012).
Szalkowski, A. M. Quick and strong a number of sequence alignment with phylogeny-aware hole placement. BMC Bioinform. 13, 129. https://doi.org/10.1186/1471-2105-13-129 (2012).
Frost, S. D. et al. Eight challenges in phylodynamic inference. Epidemics 10, 88–92. https://doi.org/10.1016/j.epidem.2014.09.001 (2015).
Taveré, S. Some probabilistic and statistical issues within the evaluation of DNA sequences. Lect. Math. Life Sci. 17, 57–86 (1986).
Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and relationship with confidence. PLoS Biol. 4, e88. https://doi.org/10.1371/journal.pbio.0040088 (2006).
Stadler, T. & Yang, Z. Relationship phylogenies with sequentially sampled ideas. Syst. Biol. 62, 674–688. https://doi.org/10.1093/sysbio/syt030 (2013).
Ho, S. Y. W. & Shapiro, B. Skyline-plot strategies for estimating demographic historical past from nucleotide sequences. Mol. Ecol. Resour. 11, 423–434. https://doi.org/10.1111/j.1755-0998.2011.02988.x (2011).
Wald, A. & Wolfowitz, J. On a check whether or not two samples are from the identical inhabitants. Ann. Math. Stat. 11, 147–162 (1940).
Conover, W. J. Sensible Nonparametric Statistics third edn. (Wiley, 2006).
Fisher, R. A. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely giant inhabitants. Biometrika 10, 507 (1915).
Bielejec, F., Lemey, P., Baele, G., Rambaut, A. & Suchard, M. A. Inferring heterogeneous evolutionary processes by means of time: From sequence substitution to phylogeography. Syst. Biol. 63, 493–504. https://doi.org/10.1093/sysbio/syu015 (2014).
Talbi, C. et al. Phylodynamics and human-mediated dispersal of a zoonotic virus. PLoS Pathog. 6, e1001166. https://doi.org/10.1371/journal.ppat.1001166 (2010).
Tohma, Okay. et al. Phylogeographic evaluation of rabies viruses within the Philippines. Infect. Genet. Evol. 23, 86–94. https://doi.org/10.1016/j.meegid.2014.01.026 (2014).
Worobey, M., Han, G. Z. & Rambaut, A. A synchronized world sweep of the interior genes of contemporary avian influenza virus. Nature 508, 254–257. https://doi.org/10.1038/nature13016 (2014).
Lemey, P., Suchard, M. & Rambaut, A. Reconstructing the preliminary world unfold of a human influenza pandemic: A Bayesian spatial-temporal mannequin for the worldwide unfold of H1N1pdm. PLoS Curr. 1, RRN1031. https://doi.org/10.1371/currents.RRN1031 (2009).
Minin, V. N. & Suchard, M. A. Counting labeled transitions in continuous-time Markov fashions of evolution. J. Math. Biol. 56, 391–412. https://doi.org/10.1007/s00285-007-0120-8 (2008).
O’Brien, J. D., Minin, V. N. & Suchard, M. A. Studying to rely: Sturdy estimates for labeled distances between molecular sequences. Mol. Biol. Evol. 26, 801–814. https://doi.org/10.1093/molbev/msp003 (2009).
Barrat, A., Barthelemy, M., Pastor-Satorras, R. & Vespignani, A. The structure of advanced weighted networks. Proc. Natl. Acad. Sci. U.S.A. 101, 3747–3752. https://doi.org/10.1073/pnas.0400087101 (2004).
Wasserman, S. & Faust, Okay. Social Community Evaluation: Strategies and Purposes (Cambridge College Press, 1994).
White, D. R. & Harary, F. The cohesiveness of blocks in social networks: Node connectivity and conditional density. Sociol. Methodol. https://doi.org/10.2307/3097280 (2001).
Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978).
Brandes, U. A sooner algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177 (2010).
Quade, D. Utilizing weighted rankings within the evaluation of full blocks with additive block results. J. Am. Stat. Assoc. 74, 680 (1979).