Sonntag, Juli 31, 2022
StartMicrobiologyCross-reactive immunity doubtlessly drives world oscillation and opposed alternation patterns of seasonal...

Cross-reactive immunity doubtlessly drives world oscillation and opposed alternation patterns of seasonal influenza A viruses


  • Ferguson, N., Anderson, R. & Gupta, S. The impact of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proc. Natl. Acad. Sci. U.S.A. 96, 790–794 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Altizer, S. et al. Seasonality and the dynamics of infectious illnesses. Ecol. Lett. 9, 467–484. https://doi.org/10.1111/j.1461-0248.2005.00879.x (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Hope-Simpson, R. E. The position of season within the epidemiology of influenza. J. Hyg. 86, 35–47 (1981).

    CAS 
    Article 

    Google Scholar
     

  • Tamerius, J. et al. World influenza seasonality: Reconciling patterns throughout temperate and tropical areas. Environ. Well being Perspect. 119, 439–445. https://doi.org/10.1289/ehp.1002383 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Viboud, C. et al. Synchrony, waves, and spatial hierarchies within the unfold of influenza. Science 312, 447–451. https://doi.org/10.1126/science.1125237 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dushoff, J., Plotkin, J. B., Levin, S. A. & Earn, D. J. Dynamical resonance can account for seasonality of influenza epidemics. Proc. Natl. Acad. Sci. U.S.A. 101, 16915–16916. https://doi.org/10.1073/pnas.0407293101 (2004).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaman, J., Pitzer, V. E., Viboud, C., Grenfell, B. T. & Lipsitch, M. Absolute humidity and the seasonal onset of influenza within the continental United States. PLoS Biol. 8, e1000316. https://doi.org/10.1371/journal.pbio.1000316 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cannell, J. J., Zasloff, M., Garland, C. F., Scragg, R. & Giovannucci, E. On the epidemiology of influenza. Virol. J. 5, 29. https://doi.org/10.1186/1743-422X-5-29 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bedford, T. et al. World circulation patterns of seasonal influenza viruses fluctuate with antigenic drift. Nature 523, 217–220. https://doi.org/10.1038/nature14460 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foley, D. A. et al. Inspecting the interseasonal resurgence of respiratory syncytial virus in Western Australia. Arch. Dis. Youngster https://doi.org/10.1136/archdischild-2021-322507 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Yeoh, D. Okay. et al. Impression of coronavirus illness 2019 public well being measures on detections of influenza and respiratory syncytial virus in kids throughout the 2020 Australian winter. Clin. Infect. Dis. 72, 2199–2202. https://doi.org/10.1093/cid/ciaa1475 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ferguson, N. M., Galvani, A. P. & Bush, R. M. Ecological and immunological determinants of influenza evolution. Nature 422, 428–433. https://doi.org/10.1038/nature01509 (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang, X. S. Pressure interactions as a mechanism for dominant pressure alternation and incidence oscillation in infectious illnesses: Seasonal influenza as a case examine. PLoS One 10, e0142170. https://doi.org/10.1371/journal.pone.0142170 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, A., Mihaylova, V., Landry, M. & Foxman, E. Interference between rhinovirus and influenza A virus: A scientific information evaluation and experimental an infection examine. Lancet Microbe 1, 254–262. https://doi.org/10.1016/S2666-5247(20)30114-2 (2020).

    Article 

    Google Scholar
     

  • Nickbakhsh, S. et al. Virus-virus interactions impression the inhabitants dynamics of influenza and the widespread chilly. Proc. Natl. Acad. Sci. U.S.A. https://doi.org/10.1073/pnas.1911083116 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fox, S. J., Miller, J. C. & Meyers, L. A. Seasonality in threat of pandemic influenza emergence. PLoS Comput. Biol. 13, e1005749. https://doi.org/10.1371/journal.pcbi.1005749 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitch, W. M., Leiter, J. M., Li, X. Q. & Palese, P. Optimistic Darwinian evolution in human influenza A viruses. Proc. Natl. Acad. Sci. U.S.A. 88, 4270–4274 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376. https://doi.org/10.1126/science.1097211 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Epstein, S. L. & Worth, G. E. Cross-protective immunity to influenza A viruses. Skilled Rev. Vaccines 9, 1325–1341. https://doi.org/10.1586/erv.10.123 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Barry, J. M., Viboud, C. & Simonsen, L. Cross-protection between successive waves of the 1918–1919 influenza pandemic: Epidemiological proof from US Military camps and from Britain. J. Infect. Dis. 198, 1427–1434. https://doi.org/10.1086/592454 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Finkelman, B. S. et al. World patterns in seasonal exercise of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: Viral coexistence and latitudinal gradients. PLoS One 2, e1296. https://doi.org/10.1371/journal.pone.0001296 (2007).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flannery, B. et al. Unfold of antigenically drifted influenza A(H3N2) viruses and vaccine effectiveness in america throughout the 2018–2019 season. J. Infect. Dis. 221, 8–15. https://doi.org/10.1093/infdis/jiz543 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bouckaert, R. et al. BEAST 2: A software program platform for Bayesian evolutionary evaluation. PLoS Comput Biol 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stadler, T., Kuhnert, D., Bonhoeffer, S. & Drummond, A. J. Start-death skyline plot reveals temporal adjustments of epidemic unfold in HIV and hepatitis C virus (HCV). Proc. Natl. Acad. Sci. U.S.A. 110, 228–233. https://doi.org/10.1073/pnas.1207965110 (2013).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • Advantageous, P., Eames, Okay. & Heymann, D. L. “Herd immunity”: A tough information. Clin. Infect. Dis. 52, 911–916. https://doi.org/10.1093/cid/cir007 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332. https://doi.org/10.1126/science.1090727 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Andreasen, V. Dynamics of annual influenza A epidemics with immuno-selection. J. Math. Biol. 46, 504–536. https://doi.org/10.1007/s00285-002-0186-2 (2003).

    MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • te Beest, D. E., van Boven, M., Hooiveld, M., van den Dool, C. & Wallinga, J. Driving elements of influenza transmission within the Netherlands. Am. J. Epidemiol. 178, 1469–1477. https://doi.org/10.1093/aje/kwt132 (2013).

    Article 

    Google Scholar
     

  • Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H. & Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 by means of the postpandemic interval. Science 368, 860–868. https://doi.org/10.1126/science.abb5793 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sridhar, S. et al. Mobile immune correlates of safety towards symptomatic pandemic influenza. Nat. Med. 19, 1305–1312. https://doi.org/10.1038/nm.3350 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sridhar, S. et al. Predominance of heterosubtypic IFN-gamma-only-secreting effector reminiscence T cells in pandemic H1N1 naive adults. Eur. J. Immunol. 42, 2913–2924. https://doi.org/10.1002/eji.201242504 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seibert, C. W. et al. Recombinant IgA is ample to forestall influenza virus transmission in guinea pigs. J. Virol. 87, 7793–7804. https://doi.org/10.1128/JVI.00979-13 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edridge, A. et al. Coronavirus protecting immunity is short-lasting. Nat. Med. 26, 1691–1693 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Braun, J. et al. SARS-CoV-2-reactive T cells in wholesome donors and sufferers with COVID-19. Nature 587, 270–274. https://doi.org/10.1038/s41586-020-2598-9 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rossen, R. D. et al. The proteins in nasal secretion. II. A longitudinal examine of IgA and neutralizing antibody ranges in nasal washings from males contaminated with influenza virus. JAMA 211, 1157–1161 (1970).

    CAS 
    Article 

    Google Scholar
     

  • Gould, V. M. W. et al. Nasal IgA gives safety towards human influenza problem in volunteers with low serum influenza antibody titre. Entrance. Microbiol. 8, 900. https://doi.org/10.3389/fmicb.2017.00900 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renegar, Okay. B., Small, P. A. Jr., Boykins, L. G. & Wright, P. F. Function of IgA versus IgG within the management of influenza viral an infection within the murine respiratory tract. J. Immunol. 173, 1978–1986 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Petrova, V. N. & Russell, C. A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 16, 60. https://doi.org/10.1038/nrmicro.2017.146 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Miller, M. S. et al. Neutralizing antibodies towards beforehand encountered influenza virus strains improve over time: A longitudinal evaluation. Sci. Transl. Med. 5, 198ra107. https://doi.org/10.1126/scitranslmed.3006637 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maurer, M. A. et al. Glycosylation of human IgA immediately inhibits influenza A and different sialic-acid-binding viruses. Cell Rep. 23, 90–99. https://doi.org/10.1016/j.celrep.2018.03.027 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattacharyya, S., Gesteland, P. H., Korgenski, Okay., Bjornstad, O. N. & Adler, F. R. Cross-immunity between strains explains the dynamical sample of paramyxoviruses. Proc. Natl. Acad. Sci. U.S.A. 112, 13396–13400. https://doi.org/10.1073/pnas.1516698112 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metcalf, C. J. et al. Use of serological surveys to generate key insights into the altering world panorama of infectious illness. Lancet 388, 728–730. https://doi.org/10.1016/S0140-6736(16)30164-7 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Vries, E. et al. Outcomes and susceptibility to neuraminidase inhibitors in people contaminated with totally different influenza B lineages: The influenza resistance data examine. J. Infect. Dis. 213, 183–190. https://doi.org/10.1093/infdis/jiv375 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Whitley, R. J. et al. World evaluation of resistance to neuraminidase inhibitors, 2008–2011: The Influenza Resistance Data Examine (IRIS). Clin. Infect. Dis. 56, 1197–1205. https://doi.org/10.1093/cid/cis1220 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • van der Vries, E. et al. Molecular assays for quantitative and qualitative detection of influenza virus and oseltamivir resistance mutations. J. Mol. Diagn. 15, 347–354. https://doi.org/10.1016/j.jmoldx.2012.11.007 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Squires, R. B. et al. Influenza analysis database: An built-in bioinformatics useful resource for influenza analysis and surveillance. Influenza Different Respir. Viruses 6, 404–416. https://doi.org/10.1111/j.1750-2659.2011.00331.x (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szalkowski, A. M. Quick and strong a number of sequence alignment with phylogeny-aware hole placement. BMC Bioinform. 13, 129. https://doi.org/10.1186/1471-2105-13-129 (2012).

    Article 

    Google Scholar
     

  • Frost, S. D. et al. Eight challenges in phylodynamic inference. Epidemics 10, 88–92. https://doi.org/10.1016/j.epidem.2014.09.001 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taveré, S. Some probabilistic and statistical issues within the evaluation of DNA sequences. Lect. Math. Life Sci. 17, 57–86 (1986).

    MathSciNet 

    Google Scholar
     

  • Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and relationship with confidence. PLoS Biol. 4, e88. https://doi.org/10.1371/journal.pbio.0040088 (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stadler, T. & Yang, Z. Relationship phylogenies with sequentially sampled ideas. Syst. Biol. 62, 674–688. https://doi.org/10.1093/sysbio/syt030 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Ho, S. Y. W. & Shapiro, B. Skyline-plot strategies for estimating demographic historical past from nucleotide sequences. Mol. Ecol. Resour. 11, 423–434. https://doi.org/10.1111/j.1755-0998.2011.02988.x (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wald, A. & Wolfowitz, J. On a check whether or not two samples are from the identical inhabitants. Ann. Math. Stat. 11, 147–162 (1940).

    MathSciNet 
    Article 

    Google Scholar
     

  • Conover, W. J. Sensible Nonparametric Statistics third edn. (Wiley, 2006).


    Google Scholar
     

  • Fisher, R. A. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely giant inhabitants. Biometrika 10, 507 (1915).


    Google Scholar
     

  • Bielejec, F., Lemey, P., Baele, G., Rambaut, A. & Suchard, M. A. Inferring heterogeneous evolutionary processes by means of time: From sequence substitution to phylogeography. Syst. Biol. 63, 493–504. https://doi.org/10.1093/sysbio/syu015 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talbi, C. et al. Phylodynamics and human-mediated dispersal of a zoonotic virus. PLoS Pathog. 6, e1001166. https://doi.org/10.1371/journal.ppat.1001166 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tohma, Okay. et al. Phylogeographic evaluation of rabies viruses within the Philippines. Infect. Genet. Evol. 23, 86–94. https://doi.org/10.1016/j.meegid.2014.01.026 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Worobey, M., Han, G. Z. & Rambaut, A. A synchronized world sweep of the interior genes of contemporary avian influenza virus. Nature 508, 254–257. https://doi.org/10.1038/nature13016 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemey, P., Suchard, M. & Rambaut, A. Reconstructing the preliminary world unfold of a human influenza pandemic: A Bayesian spatial-temporal mannequin for the worldwide unfold of H1N1pdm. PLoS Curr. 1, RRN1031. https://doi.org/10.1371/currents.RRN1031 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minin, V. N. & Suchard, M. A. Counting labeled transitions in continuous-time Markov fashions of evolution. J. Math. Biol. 56, 391–412. https://doi.org/10.1007/s00285-007-0120-8 (2008).

    MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • O’Brien, J. D., Minin, V. N. & Suchard, M. A. Studying to rely: Sturdy estimates for labeled distances between molecular sequences. Mol. Biol. Evol. 26, 801–814. https://doi.org/10.1093/molbev/msp003 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barrat, A., Barthelemy, M., Pastor-Satorras, R. & Vespignani, A. The structure of advanced weighted networks. Proc. Natl. Acad. Sci. U.S.A. 101, 3747–3752. https://doi.org/10.1073/pnas.0400087101 (2004).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wasserman, S. & Faust, Okay. Social Community Evaluation: Strategies and Purposes (Cambridge College Press, 1994).

    Guide 

    Google Scholar
     

  • White, D. R. & Harary, F. The cohesiveness of blocks in social networks: Node connectivity and conditional density. Sociol. Methodol. https://doi.org/10.2307/3097280 (2001).

    Article 

    Google Scholar
     

  • Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978).

    Article 

    Google Scholar
     

  • Brandes, U. A sooner algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177 (2010).

    Article 

    Google Scholar
     

  • Quade, D. Utilizing weighted rankings within the evaluation of full blocks with additive block results. J. Am. Stat. Assoc. 74, 680 (1979).

    MathSciNet 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments