Dienstag, August 2, 2022
StartMicrobiologyDistinct gene clusters drive formation of ferrosome organelles in micro organism

Distinct gene clusters drive formation of ferrosome organelles in micro organism


  • Andrews, S. C. In Advances in Microbial Physiology vol. 40 (ed. Poole, R. Okay.) 281–351 (Tutorial, 1998).

  • Touati, D. Iron and oxidative stress in micro organism. Arch. Biochem. Biophys. 373, 1–6 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andrews, S. C., Robinson, A. Okay. & Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andrews, S. C. The ferritin-like superfamily: evolution of the organic iron storeman from a rubrerythrin-like ancestor. Biochim. Biophys. Acta 1800, 691–705 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nichols, R. J., Cassidy-Amstutz, C., Chaijarasphong, T. & Savage, D. F. Encapsulins: molecular biology of the shell. Crit. Rev. Biochem. Mol. Biol. 52, 583–594 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Byrne, M. E. et al. Desulfovibrio magneticus RS-1 incorporates an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. Proc. Natl Acad. Sci. USA 107, 12263–12268 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Glasauer, S., Langley, S. & Beveridge, T. J. Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science 295, 117–119 (2002).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Sakaguchi, T., Arakaki, A. & Matsunaga, T. Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int. J. Syst. Evol. Microbiol. 52, 215–221 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grant, C. R., Rahn-Lee, L., LeGault, Okay. N. & Komeili, A. Genome modifying methodology for the anaerobic magnetotactic bacterium Desulfovibrio magneticus RS-1. Appl. Env. Microbiol. 84, e01724-18 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Rahn-Lee, L. et al. A genetic technique for probing the useful range of magnetosome formation. PLoS Genet. 11, e1004811 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Argüello, J. M., Eren, E. & González-Guerrero, M. The construction and performance of heavy steel transport P1B-ATPases. BioMetals 20, 233 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Smith, A. T., Smith, Okay. P. & Rosenzweig, A. C. Variety of the metal-transporting P1B-type ATPases. J. Biol. Inorg. Chem. 19, 947–960 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chan, H. et al. The P-type ATPase superfamily. J. Mol. Microbiol. Biotechnol. 19, 5–104 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Padilla-Benavides, T., Lengthy, J. E., Raimunda, D., Sassetti, C. M. & Argüello, J. M. A novel P1B-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria. J. Biol. Chem. 288, 11334–11347 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Botella, H. et al. Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10, 248–259 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Russ, W. P. & Engelman, D. M. The GxxxG motif: a framework for transmembrane helix–helix affiliation. J. Mol. Biol. 296, 911–919 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Unterreitmeier, S. et al. Phenylalanine promotes interplay of transmembrane domains through GxxxG motifs. J. Mol. Biol. 374, 705–718 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jarsch, I. Okay., Daste, F. & Gallop, J. L. Membrane curvature in cell biology: an integration of molecular mechanisms. J. Cell Biol. 214, 375–387 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Glasauer, S. et al. Combined-valence cytoplasmic iron granules are linked to anaerobic respiration. Appl. Environ. Microbiol. 73, 993–996 (2007).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • VerBerkmoes, N. C. et al. Willpower and comparability of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris underneath its main metabolic states. J. Proteome Res. 5, 287–298 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rey, F. E. & Harwood, C. S. FixK, a world regulator of microaerobic development, controls photosynthesis in Rhodopseudomonas palustris. Mol. Microbiol. 75, 1007–1020 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bose, A. & Newman, D. Okay. Regulation of the phototrophic iron oxidation (pio) genes in Rhodopseudomonas palustris TIE-1 is mediated by the worldwide regulator, FixK. Mol. Microbiol. 79, 63–75 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Amor, M. et al. Magnetotactic micro organism accumulate a big pool of iron distinct from their magnetite crystals. Appl. Environ. Microbiol. 86, e01278-20 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abdul-Tehrani, H. et al. Ferritin mutants of Escherichia coli are iron poor and development impaired, and fur mutants are iron poor. J. Bacteriol. 181, 1415–1428 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rolfe, M. D. et al. Lag part is a definite development part that prepares micro organism for exponential development and includes transient steel accumulation. J. Bacteriol. 194, 686–701 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bender, Okay. S. et al. Evaluation of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough. Appl. Environ. Microbiol. 73, 5389–5400 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Uebe, R. et al. Deletion of a fur-like gene impacts iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense. J. Bacteriol. 192, 4192–4204 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, Q. et al. Physiological traits of Magnetospirillum gryphiswaldense MSR-1 that management cell development underneath high-iron and low-oxygen situations. Sci. Rep. 7, 2800 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pereira, P. M. et al. Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental situations. Arch. Microbiol. 189, 451–461 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou, A. et al. Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. Environ. Microbiol. 12, 2645–2657 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Caffrey, S. M. & Voordouw, G. Impact of sulfide on development physiology and gene expression of Desulfovibrio vulgaris Hildenborough. Antonie Van Leeuwenhoek 97, 11–20 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ho, T. D. & Ellermeier, C. D. Ferric uptake regulator Fur management of putative iron acquisition methods in Clostridium difficile. J. Bacteriol. 197, 2930–2940 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiao, Y. & Newman, D. Okay. The pio operon is important for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189, 1765–1773 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim, M.-Okay. & Harwood, C. S. Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris. FEMS Microbiol. Lett. 83, 199–203 (1991).

    CAS 

    Google Scholar
     

  • Guan, G. et al. PfeT, a P1B4-type ATPase, effluxes ferrous iron and protects Bacillus subtilis in opposition to iron intoxication. Mol. Microbiol. 98, 787–803 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Komeili, A., Vali, H., Beveridge, T. J. & Newman, D. Okay. Magnetosome vesicles are current earlier than magnetite formation, and MamA is required for his or her activation. Proc. Natl Acad. Sci. USA 101, 3839–3844 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Murat, D., Quinlan, A., Vali, H. & Komeili, A. Complete genetic dissection of the magnetosome gene island reveals the step-wise meeting of a prokaryotic organelle. Proc. Natl Acad. Sci. USA 107, 5593–5598 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Rey, F. E., Oda, Y. & Harwood, C. S. Regulation of uptake hydrogenase and results of hydrogen utilization on gene expression in Rhodopseudomonas palustris. J. Bacteriol. 188, 6143–6152 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Clark, I. C. et al. Artificial and evolutionary development of a chlorate-reducing Shewanella oneidensis MR-1. mBio 6, e00282-15 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Plumb, R. S. et al. UPLC/MSE: a brand new strategy for producing molecular fragment info for biomarker construction elucidation. Speedy Commun. Mass Spectrom. 20, 1989–1994 (2006).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Geromanos, S. J., Hughes, C., Ciavarini, S., Vissers, J. P. C. & Langridge, J. I. Utilizing ion purity scores for enhancing quantitative accuracy and precision in advanced proteomics samples. Anal. Bioanal. Chem. 404, 1127–1139 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shliaha, P. V., Bond, N. J., Gatto, L. & Lilley, Okay. S. Results of touring wave ion mobility separation on information unbiased acquisition in proteomics research. J. Proteome Res. 12, 2323–2339 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Levin, Y. & Bahn, S. LC–MS/MS in proteomics. Strategies Mol. Biol 658, 217–231 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Neilson, Okay. A. et al. Much less label, extra free: approaches in label-free quantitative mass spectrometry. Proteomics 11, 535–553 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nahnsen, S., Bielow, C., Reinert, Okay. & Kohlbacher, O. Instruments for label-free peptide quantification. Mol. Cell. Proteomics 12, 549–556 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mild, S. H. et al. A flavin-based extracellular electron switch mechanism in various Gram-positive micro organism. Nature 562, 140–144 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Engström, P. et al. Evasion of autophagy mediated by Rickettsia floor protein OmpB is essential for virulence. Nat. Microbiol. 4, 2538–2551 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pinals, R. L. et al. Quantitative protein corona composition and dynamics on carbon nanotubes in organic environments. Angew. Chem. Int. Ed. 59, 23668–23677 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Engström, P., Burke, T. P., Tran, C. J., Iavarone, A. T. & Welch, M. D. Lysine methylation shields an intracellular pathogen from ubiquitylation and autophagy. Sci. Adv. 7, eabg2517 (2021).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schneider, C. A., Rasband, W. S. & Eliceiri, Okay. W. NIH Picture to ImageJ: 25 years of picture evaluation. Nat. Strategies 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Atolia, E. et al. Environmental and physiological elements affecting high-throughput measurements of bacterial development. mBio 11, e01378-20 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, I.-M. A. et al. IMG/M v.5.0: an built-in information administration and comparative evaluation system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kumar, S., Nei, M., Dudley, J. & Tamura, Okay. MEGA: a biologist-centric software program for evolutionary evaluation of DNA and protein sequences. Temporary. Bioinform. 9, 299–306 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Castresana, J. Number of conserved blocks from a number of alignments for his or her use in phylogenetic evaluation. Mol. Biol. Evol. 17, 540–552 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stamatakis, A. RAxML model 8: a device for phylogenetic evaluation and post-analysis of enormous phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lefort, V., Longueville, J.-E. & Gascuel, O. SMS: sensible mannequin choice in PhyML. Mol. Biol. Evol. 34, 2422–2424 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: current updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Steinegger, M. & Söding, J. MMseqs2 permits delicate protein sequence trying to find the evaluation of large information units. Nat. Biotechnol. 35, 1026–1028 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Markiel, S. P. et al. Cytoscape: a software program setting for built-in fashions of biomolecular interplay networks. Genome Res. 13, 2498–2504 (2003).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kanehisa, M. & Goto, S. Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morris, J. H. et al. clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinf. 12, 436 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Sievers, F. et al. Quick, scalable era of high-quality protein a number of sequence alignments utilizing Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Finn, R. D., Clements, J. & Eddy, S. R. HMMER internet server: interactive sequence similarity looking. Nucleic Acids Res. 39, W29–W37 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Bernsel, A., Viklund, H., Hennerdal, A. & Elofsson, A. TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res. 37, W465–W468 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Crooks, G. E. WebLogo: a sequence brand generator. Genome Res. 14, 1188–1190 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Perez-Riverol, Y. et al. The PRIDE database and associated instruments and sources in 2019: bettering assist for quantification information. Nucleic Acids Res. 47, D442–D450 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments