Sonntag, Juli 31, 2022
StartMicrobiologyDynamic character displacement amongst a pair of bacterial phyllosphere commensals in situ

Dynamic character displacement amongst a pair of bacterial phyllosphere commensals in situ


  • Brown, W. L. Jr. & Wilson, E. O. Character displacement. Syst. Biol. 5, 49–64 (1956).


    Google Scholar
     

  • Stuart, Y. E. & Losos, J. B. Ecological character displacement: glass half full or half empty? Developments Ecol. Evol. 28, 402–408 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Schluter, D. & McPhail, J. D. Ecological character displacement and speciation in sticklebacks. Am. Nat. 140, 85–108 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tilman, D., Could, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).

    ADS 
    Article 

    Google Scholar
     

  • Ghoul, M. & Mitri, S. The ecology and evolution of microbial competitors. Developments Microbiol. 24, 833–845 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pfennig, D. W., Rice, A. M. & Martin, R. A. Ecological alternative and phenotypic plasticity work together to advertise character displacement and species coexistence. Ecology 87, 769–779 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological idea. Developments Ecol. Evol. 18, 119–125 (2003).

    Article 

    Google Scholar
     

  • Day, T. & Younger, Ok. A. Aggressive and facilitative evolutionary diversification. Bioscience 54, 101–109 (2004).

    Article 

    Google Scholar
     

  • Stachowicz, J. J. Mutualism, facilitation, and the construction of ecological communities. Bioscience 51, 235–246 (2001).

    Article 

    Google Scholar
     

  • Stuart, Y. E., Inkpen, S. A., Hopkins, R. & Bolnick, D. I. Character displacement is a sample: so, what causes it? Biol. J. Linn. Soc. 121, 711–715 (2017).

    Article 

    Google Scholar
     

  • Brockhurst, M. A., Hochberg, M. E., Bell, T. & Buckling, A. Character displacement promotes cooperation in bacterial biofilms. Curr. Biol. 16, 2030–2034 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ellis, C. N., Traverse, C. C., Mayo-Smith, L., Buskirk, S. W. & Cooper, V. S. Character displacement and the evolution of area of interest complementarity in a mannequin biofilm neighborhood. Evolution 69, 283–293 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rainey, P. B., Buckling, A., Kassen, R. & Travisano, M. The emergence and upkeep of variety: insights from experimental bacterial populations. Developments Ecol. Evol. 15, 243–247 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Turner, P. E., Souza, V. & Lenski, R. E. Checks of ecological mechanisms selling the steady coexistence of two bacterial genotypes. Ecology 77, 2119–2129 (1996).

    Article 

    Google Scholar
     

  • Xavier, J. B. & Foster, Ok. R. Cooperation and battle in microbial biofilms. Proc. Natl. Acad. Sci. USA 104, 876–881 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Westeberhard, M. J. Phenotypic plasticity and the origins of variety. Annu. Rev. Ecol. Evol. Syst. 20, 249–278 (1989).

    Article 

    Google Scholar
     

  • Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Developments Ecol. Evol. 31, 803–813 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Pfennig, D. W. & Pfennig, Ok. S. Growth and evolution of character displacement. Ann NY Acad Sci. 1256, 89–107 (2012).

    ADS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • Finkel, O. M., Castrillo, G., Herrera Paredes, S., Salas Gonzalez, I. & Dangl, J. L. Understanding and exploiting plant useful microbes. Curr. Opin. Plant Biol. 38, 155–163 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Muller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The plant microbiota: systems-level insights and views. Annu. Rev. Genet. 50, 211–234 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schlaeppi, Ok. & Bulgarelli, D. The plant microbiome at work. Mol. Plant Microbe Work together. 28, 212–217 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leveau, J. H. & Lindow, S. E. Urge for food of an epiphyte: quantitative monitoring of bacterial sugar consumption within the phyllosphere. Proc. Natl. Acad. Sci. USA 98, 3446–3453 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lindow, S. E. & Leveau, J. H. Phyllosphere microbiology. Curr. Opin. Biotechnol. 13, 238–243 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meyer, Ok. M. & Leveau, J. H. Microbiology of the phyllosphere: a playground for testing ecological ideas. Oecologia 168, 621–629 (2012).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Delmotte, N. et al. Group proteogenomics reveals insights into the physiology of phyllosphere micro organism. Proc. Natl. Acad. Sci. USA 106, 16428–16433 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vorholt, J. A. Microbial life within the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carlstrom, C. I. et al. Artificial microbiota reveal precedence results and keystone strains within the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vorholt, J. A., Vogel, C., Carlstrom, C. I. & Müller, D. B. Establishing causality: alternatives of artificial communities for plant microbiome analysis. Cell Host Microbe. 22, 142–155 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bai, Y. et al. Purposeful overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bodenhausen, N., Horton, M. W. & Bergelson, J. Bacterial communities related to the leaves and the roots of Arabidopsis thaliana. PLoS ONE 8, e56329 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Horton, M. W. et al. Genome-wide affiliation examine of Arabidopsis thaliana leaf microbial neighborhood. Nat. Commun. 5, 5320 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Roman-Reyna, V. et al. Characterization of the leaf microbiome from whole-genome sequencing knowledge of the 3000 rice genomes undertaking. Rice (NY) 13, 72 (2020).

    Article 

    Google Scholar
     

  • Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. mBio. 6, e02527–14 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Laforest-Lapointe, I. & Whitaker, B. Ok. Decrypting the phyllosphere microbiota: progress and challenges. Am. J. Bot. 106, 171–173 (2019).

    PubMed 

    Google Scholar
     

  • Baldotto, L. E. B. & Olivares, F. L. Phylloepiphytic interplay between micro organism and completely different plant species in a tropical agricultural system. Can. J. Microbiol. 54, 918–931 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lindow, S. E. & Brandl, M. T. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69, 1875–1883 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Monier, J. M. & Lindow, S. E. Differential survival of solitary and aggregated bacterial cells promotes combination formation on leaf surfaces. Proc. Natl. Acad. Sci. USA 100, 15977–15982 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Monier, J. M. & Lindow, S. E. Frequency, dimension, and localization of bacterial aggregates on bean leaf surfaces. Appl. Environ. Microbiol. 70, 346–355 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morris, C. E., Monier, J. M. & Jacques, M. A. A method To quantify the inhabitants dimension and composition of the biofilm part in communities of micro organism within the phyllosphere. Appl. Environ. Microbiol. 64, 4789–4795 (1998).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Remus-Emsermann, M. N. P. et al. Spatial distribution analyses of pure phyllosphere-colonizing micro organism on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ. Microbiol. 16, 2329–2340 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Remus-Emsermann, M. N. P. & Schlechter, R. O. Phyllosphere microbiology: on the interface between microbial people and the plant host. New Phytol. 218, 1327–1333 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Gourion, B., Rossignol, M. & Vorholt, J. A. A proteomic examine of Methylobacterium extorquens reveals a response regulator important for epiphytic development. Proc. Natl. Acad. Sci. USA 103, 13186–13191 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jacobs, J. L., Carroll, T. L. & Sundin, G. W. The position of pigmentation, ultraviolet radiation tolerance, and leaf colonization methods within the epiphytic survival of phyllosphere micro organism. Microb. Ecol. 49, 104–113 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Müller, D. B., Schubert, O. T., Rost, H., Aebersold, R. & Vorholt, J. A. Techniques-level proteomics of two ubiquitous leaf commensals reveals complementary adaptive traits for phyllosphere colonization. Mol. Cell. Proteom. 15, 3256–3269 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ochsner, A. M. et al. Use of rare-earth parts within the phyllosphere colonizer Methylobacterium extorquens PA1. Mol. Microbiol. 111, 1152–1166 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Helmann, T. C., Deutschbauer, A. M. & Lindow, S. E. Genome-wide identification of Pseudomonas syringae genes required for health throughout colonization of the leaf floor and apoplast. Proc. Natl. Acad. Sci. USA 116, 18900–18910 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nobori, T. et al. Transcriptome panorama of a bacterial pathogen below plant immunity. Proc. Natl. Acad. Sci. USA 115, E3055–E3064 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pulawska, J. et al. Transcriptome evaluation of Xanthomonas fragariae in strawberry leaves. Sci. Rep. 10, 20582 (2020).

  • Knief, C. et al. Metaproteogenomic evaluation of microbial communities within the phyllosphere and rhizosphere of rice. ISME J. 6, 1378–1390 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Innerebner, G., Knief, C. & Vorholt, J. A. Safety of Arabidopsis thaliana towards leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a managed mannequin system. Appl. Environ. Microbiol. 77, 3202–3210 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vogel, C., Innerebner, G., Zingg, J., Guder, J. & Vorholt, J. A. Ahead genetic in planta display for identification of plant-protective traits of Sphingomonas sp Pressure Fr1 towards Pseudomonas syringae DC3000. Appl. Environ. Microbiol. 78, 5529–5535 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ryffel, F. et al. Metabolic footprint of epiphytic micro organism on Arabidopsis thaliana leaves. ISME J. 10, 632–643 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vogel, C. M., Potthoff, D. B., Schafer, M., Barandun, N. & Vorholt, J. A. Protecting position of the Arabidopsis leaf microbiota towards a bacterial pathogen. Nat. Microbiol. 6, 1537–1548 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pfeilmeier, S. et al. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat. Microbiol. 6, 852–864 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maier, B. A. et al. A basic non-self response as a part of plant immunity. Nat. Vegetation 7, 696–705 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Breton, C., Snajdrova, L., Jeanneau, C., Koca, J. & Imberty, A. Constructions and mechanisms of glycosyltransferases. Glycobiology 16, 29r–37r (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tao, F., Swarup, S. & Zhang, L. H. Quorum sensing modulation of a putative glycosyltransferase gene cluster important for Xanthomonas campestris biofilm formation. Environ. Microbiol. 12, 3159–3170 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou, M. X., Zhu, F., Dong, S. L., Pritchard, D. G. & Wu, H. A novel glucosyltransferase is required for glycosylation of a serine-rich adhesin and biofilm formation by Streptococcus parasanguinis. J. Biol. Chem. 285, 12140–12148 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Becker, A. et al. Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti. J. Mol. Microbiol. Biotechnol. 4, 187–190 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Halder, U., Banerjee, A. & Bandopadhyay, R. Structural and practical properties, biosynthesis, and patenting tendencies of bacterial succinoglycan: a evaluate. Indian J. Microbiol. 57, 278–284 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Niehaus, Ok. & Becker, A. The position of microbial floor polysaccharides within the Rhizobium-legume interplay. Sub-Cell. Biochem. 29, 73–116 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Ellis, H. R. Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system. Bioorg. Chem. 39, 178–184 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marco, M. L., Legac, J. & Lindow, S. E. Pseudomonas syringae genes induced throughout colonization of leaf surfaces. Environ. Microbiol. 7, 1379–1391 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu, X. L. et al. Transcriptional responses of Pseudomonas syringae to development in epiphytic versus apoplastic leaf websites. Proc. Natl. Acad. Sci. USA 110, E425–E434 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cai, S. J. & Inouye, M. EnvZ-OmpR interplay and osmoregulation in Escherichia coli. J. Biol. Chem. 277, 24155–24161 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Freeman, B. C. et al. Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic health and osmotolerance. J. Bacteriol. 195, 4742–4752 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scheublin, T. R. et al. Transcriptional profiling of gram-positive Arthrobacter within the phyllosphere: induction of pollutant degradation genes by pure plant phenolic compounds. Environ. Microbiol. 16, 2212–2225 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Felix, G., Duran, J. D., Volko, S. & Boller, T. Vegetation have a delicate notion system for essentially the most conserved area of bacterial flagellin. Plant J. 18, 265–276 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Macho, A. P. & Zipfel, C. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54, 263–272 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hopsu-Havu, V. Ok. & Glenner, G. G. A brand new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 7, 197–201 (1966).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kavi Kishor, P. B., Hima Kumari, P., Sunita, M. S. & Sreenivasulu, N. Position of proline in cell wall synthesis and plant improvement and its implications in plant ontogeny. Entrance. Plant Sci. 6, 544 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chipperfield, J. R. & Ratledge, C. Salicylic acid will not be a bacterial siderophore: a theoretical examine. Biometals 13, 165–168 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Visca, P., Ciervo, A., Sanfilippo, V. & Orsi, N. Iron-regulated salicylate synthesis by Pseudomonas Spp. J. Gen. Microbiol. 139, 1995–2001 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Seifert, G. J., Barber, C., Wells, B., Dolan, L. & Roberts, Ok. Galactose biosynthesis in Arabidopsis: genetic proof for substrate channeling from UDP-D-galactose into cell wall polymers. Curr. Biol. 12, 1840–1845 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zablackis, E., Huang, J., Muller, B., Darvill, A. G. & Albersheim, P. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol. 107, 1129–1138 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Santos-Beneit, F. The Pho regulon: an enormous regulatory community in micro organism. Entrance. Microbiol. 6, 402 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mortimer, J. C. et al. An uncommon xylan in Arabidopsis main cell partitions is synthesised by GUX3, IRX9L, IRX10L and IRX14. Plant J. 83, 413–426 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Honer Zu Bentrup, Ok., Miczak, A., Swenson, D. L. & Russell, D. G. Characterization of exercise and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J. Bacteriol. 181, 7161–7167 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reinscheid, D. J., Eikmanns, B. J. & Sahm, H. Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical evaluation of the enzyme. J. Bacteriol. 176, 3474–3483 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Groisman, E. A., Chiao, E., Lipps, C. J. & Heffron, F. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc. Natl. Acad. Sci. USA 86, 7077–7081 (1989).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lamarche, M. G., Wanner, B. L., Crepin, S. & Harel, J. The phosphate regulon and bacterial virulence: a regulatory community connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32, 461–473 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jameson, G. N., Cosper, M. M., Hernandez, H. L., Johnson, M. Ok. & Huynh, B. H. Position of the [2Fe-2S] cluster in recombinant Escherichia coli biotin synthase. Biochemistry 43, 2022–2031 (2004).

  • Sirithanakorn, C. & Cronan, J. E. Biotin, a common and important cofactor: synthesis, ligation and regulation. FEMS Microbiol. Rev. 45, fuab003 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Choi-Rhee, E. & Cronan, J. E. Biotin synthase is catalytic in vivo, however catalysis engenders destruction of the protein. Chem. Biol. 12, 461–468 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wilmes, P. et al. Group proteogenomics highlights microbial strain-variant protein expression inside activated sludge performing enhanced organic phosphorus removing. ISME J. 2, 853–864 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Beier, S., Rivers, A. R., Moran, M. A. & Obernosterer, I. Phenotypic plasticity in heterotrophic marine microbial communities in steady cultures. ISME J. 9, 1141–1151 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Kim, H. et al. Excessive inhabitants of Sphingomonas species on plant floor. J. Appl. Microbiol. 85, 731–736 (1998).

    Article 

    Google Scholar
     

  • Singh, P., Santoni, S., Weber, A., This, P. & Peros, J. P. Understanding the phyllosphere microbiome assemblage in grape species (Vitaceae) with amplicon sequence knowledge constructions. Sci. Rep. 9, 14294 (2019).

  • Kosma, D. Ok. et al. The affect of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol. 151, 1918–1929 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Piffeteau, A. & Gaudry, M. Biotin uptake: inflow, efflux and countertransport in Escherichia coli K12. Biochim. Biophys. Acta 816, 77–82 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • D’Souza, G. et al. Much less is extra: selective benefits can clarify the prevalent lack of biosynthetic genes in micro organism. Evolution 68, 2559–2570 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Hassani, M. A., Duran, P. & Hacquard, S. Microbial interactions inside the plant holobiont. Microbiome 6, 58 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mas, A., Jamshidi, S., Lagadeuc, Y., Eveillard, D. & Vandenkoornhuyse, P. Past the black queen speculation. ISME J. 10, 2085–2091 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morris, B. E., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interplay for the frequent good. FEMS Microbiol. Rev. 37, 384–406 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pacheco, A. R., Moel, M. & Segre, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pande, S. et al. Health and stability of obligate cross-feeding interactions that emerge upon gene loss in micro organism. ISME J. 8, 953–962 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Joyner, D. C. & Lindow, S. E. Heterogeneity of iron bioavailability on crops assessed with a whole-cell GFP-based bacterial biosensor. Microbiol. 146, 2435–2445 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Remus-Emsermann, M. N., de Oliveira, S., Schreiber, L. & Leveau, J. H. Quantification of lateral heterogeneity in carbohydrate permeability of remoted plant leaf cuticles. Entrance. Microbiol. 2, 197 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Remus-Emsermann, M. N. P., Tecon, R., Kowalchuk, G. A. & Leveau, J. H. J. Variation in native carrying capability and the person destiny of bacterial colonizers within the phyllosphere. ISME J. 6, 756–765 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peredo, E. L. & Simmons, S. L. Leaf-FISH: microscale imaging of bacterial taxa on phyllosphere. Entrance. Microbiol. 8, 2669 (2018).

  • Dar, D., Dar, N., Cai, L. & Newman, D. Ok. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell decision. Science 373, eabi4882 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ledermann, R., Strebel, S., Kampik, C. & Fischer, H. M. Versatile vectors for environment friendly mutagenesis of Bradyrhizobium diazoefficiens and different alphaproteobacteria. Appl. Environ. Microbiol. 82, 2791–2799 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roux, M. et al. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23, 2440–2455 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Staswick, P. E., Tiryaki, I. & Rowe, M. L. Jasmonate response locus JAR1 and a number of other associated Arabidopsis genes encode enzymes of the firefly luciferase superfamily that present exercise on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405–1415 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Torres, M. A., Dangl, J. L. & Jones, J. D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates within the plant protection response. Proc. Natl. Acad. Sci. USA 99, 517–522 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cao, H., Glazebrook, J., Clarke, J. D., Volko, S. & Dong, X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57–63 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schlesier, B., Breton, F. & Mock, H. P. A hydroponic tradition system for rising Arabidopsis thaliana plantlets below sterile circumstances. Plant Mol. Biol. Rep. 21, 449–456 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hemmerle, L., Ochsner, A. M., Vonderach, T., Hattendorf, B. & Vorholt, J. A. Mass spectrometry-based approaches to check lanthanides and lanthanide-dependent proteins within the phyllosphere. Strategies Enzymol. 650, 215–236 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Uhrig, R. G. et al. Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. Plant Cell Environ. 44, 821–841 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Davis, J. J. et al. The PATRIC bioinformatics useful resource middle: increasing knowledge and evaluation capabilities. Nucleic Acids Res. 48, D606–D612 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved practical annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Perez-Riverol, Y. et al. The PRIDE database and associated instruments and assets in 2019: bettering assist for quantification knowledge. Nucleic Acids Res. 47, D442–D450 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments