Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Quick-chain fatty acids stimulate glucagon-like peptide-1 secretion through the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364–71.
Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R. Regulation of irritation by quick chain fatty acids. Vitamins. 2011;3:858–76.
Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the intestine microbiota. Science. 2018;362:t9076.
Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. Causal relationships among the many intestine microbiome, short-chain fatty acids and metabolic illnesses. Nat Genet. 2019;51:600–5.
Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Quick chain fatty acids (SCFAs)-mediated intestine epithelial and immune regulation and its relevance for inflammatory bowel illnesses. Entrance Immunol. 2019;10:277.
Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Intestine micro organism selectively promoted by dietary fibers alleviate kind 2 diabetes. Science. 2018;359:1151–6.
Sitkin S, Vakhitov T, Pokrotnieks J. The right way to enhance the butyrate-producing capability of the intestine microbiome: do IBD sufferers really want butyrate substitute and butyrogenic remedy? J Crohn’s Colitis. 2018;12:881–2.
Lordan C, Thapa D, Ross RP, Cotter PD. Potential for enriching next-generation health-promoting intestine micro organism by prebiotics and different dietary elements. Intestine Microbes. 2019;11:1–20.
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Food plan quickly and reproducibly alters the human intestine microbiome. Nature. 2014;505:559–63.
Singh V, Yeoh BS, Walker RE, Xiao X, Saha P, Golonka RM, et al. Microbiota fermentation-NLRP3 axis shapes the influence of dietary fibres on intestinal irritation. Intestine. 2019;68:1801–12.
Healey G, Murphy R, Butts C, Brough L, Whelan Okay, Coad J. Routine dietary fibre consumption influences intestine microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention examine. Brit J Nutr. 2018;119:176–89.
Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C, Schmidt TM. Dynamics of human intestine microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio. 2019;10:e02566–18.
Deehan EC, Yang C, Perez-Muñoz ME, Nguyen NK, Cheng CC, Triador L, et al. Precision microbiome modulation with discrete dietary fiber buildings directs short-chain fatty acid manufacturing. Cell Host Microbe. 2020;27:389–404.
Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome. 2016;4:33.
Nguyen NK, Deehan EC, Zhang Z, Jin M, Baskota N, Perez-Muñoz ME, et al. Intestine microbiota modulation with long-chain corn bran arabinoxylan in adults with chubby and weight problems is linked to an individualized temporal enhance in fecal propionate. Microbiome. 2020;8:118.
Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch within the human colon. ISME J. 2012;6:1535–43.
Lahti L, Salojarvi J, Salonen A, Scheffer M, de Vos WM. Tipping components within the human intestinal ecosystem. Nat Commun. 2014;5:4344.
Rodriguez J, Hiel S, Neyrinck AM, Le Roy T, Pötgens SA, Leyrolle Q, et al. Discovery of the intestine microbial signature driving the efficacy of prebiotic intervention in overweight sufferers. Intestine. 2020;69:1975–87.
Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary fiber-induced enchancment in glucose metabolism is related to elevated abundance of Prevotella. Cell Metab. 2015;22:971–82.
Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competitors, and stability. Science. 2015;350:663–6.
Davis LMG, Martínez I, Walter J, Goin C, Hutkins RW. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides leads to a extremely particular bifidogenic response in people. PLoS ONE. 2011;6:e25200.
Solden LM, Naas AE, Roux S, Daly RA, Collins WB, Nicora CD, et al. Interspecies cross-feeding orchestrates carbon degradation within the rumen ecosystem. Nat Microbiol. 2018;3:1274–84.
Rakoff-Nahoum S, Coyne MJ, Comstock LE. An ecological community of polysaccharide utilization amongst human intestinal symbionts. Curr Biol. 2014;24:40–9.
Rao C, Coyte KZ, Bainter W, Geha RS, Martin CR, Rakoff-Nahoum S. Multi-kingdom ecological drivers of microbiota meeting in preterm infants. Nature. 2021;591:633–8.
Koskella B, Corridor LJ, Metcalf C. The microbiome past the horizon of ecological and evolutionary principle. Nat Ecol Evol. 2017;1:1606–15.
Goldford JE, Lu N, Bajic D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial group meeting. Science. 2018;361:469–74.
Ortiz A, Vega NM, Ratzke C, Gore J. Interspecies bacterial competitors regulates group meeting within the C. elegans gut. ISME J. 2021;15:2131–45.
Liu Z, de Vries B, Gerritsen J, Smidt H, Zoetendal EG. Microbiome-based stratification to information dietary interventions to enhance human well being. Nutr Res. 2020;82:1–10.
Ahmed W, Rashid S. Practical and therapeutic potential of inulin: a complete assessment. Crit Rev Meals Sci Nutr. 2019;59:1–13.
Cerqueira FM, Photenhauer AL, Pollet RM, Brown HA, Koropatkin NM. Starch digestion by intestine micro organism: crowdsourcing for carbs. Tendencies Microbiol. 2019;28:95–108.
Parker KD, Albeke SE, Gigley JP, Goldstein AM, Ward NL. Microbiome composition in each wild-type and illness mannequin mice is closely influenced by mouse facility. Entrance Microbiol. 2018;9:1598.
Ericsson AC, Davis JW, Spollen W, Bivens N, Givan S, Hagan CE, et al. Results of vendor and genetic background on the composition of the fecal microbiota of inbred mice. PLoS ONE. 2015;10:e116704.
Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R, et al. A novel sparse compositional method reveals microbial perturbations. mSystems. 2019;4:e00016–19.
Lagkouvardos I, Lesker TR, Hitch TCA, Gálvez EJC, Smit N, Neuhaus Okay, et al. Sequence and cultivation examine of Muribaculaceae reveals novel species, host desire, and useful potential of this but undescribed household. Microbiome. 2019;7:28.
Pereira FC, Wasmund Okay, Cobankovic I, Jehmlich N, Herbold CW, Lee KS, et al. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun. 2020;11:5104.
Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A brand new genomic blueprint of the human intestine microbiota. Nature. 2019;568:499–504.
Wu GD, Chen J, Hoffmann C, Bittinger Okay, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with intestine microbial enterotypes. Science. 2011;334:105–8.
Creswell R, Tan J, Leff JW, Brooks B, Mahowald MA, Thieroff-Ekerdt R, et al. Excessive-resolution temporal profiling of the human intestine microbiome reveals constant and cascading alterations in response to dietary glycans. Genome Med. 2020;12:59.
Mackevicius EL, Bahle AH, Williams AH, Gu S, Denisenko NI, Goldman MS, et al. Unsupervised discovery of temporal sequences in high-dimensional datasets, with functions to neuroscience. Elife. 2019;8:e38471.
Morjaria S, Schluter J, Taylor BP, Littmann ER, Carter RA, Fontana E, et al. Antibiotic-induced shifts in fecal microbiota density and composition throughout hematopoietic stem cell transplantation. Infect Immun. 2019;87:e00206.
Stein RR, Bucci V, Toussaint NC, Buffie CG, Ratsch G, Pamer EG, et al. Ecological modeling from time-series inference: perception into dynamics and stability of intestinal microbiota. PLoS Comput Biol. 2013;9:e1003388.
Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation throughout the intestine microbiota. Nature. 2016;533:255–9.
Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human intestine microbiota. Nat Rev Microbiol. 2012;10:323–35.
Chijiiwa R, Hosokawa M, Kogawa M, Nishikawa Y, Ide Okay, Sakanashi C, et al. Single-cell genomics of uncultured micro organism reveals dietary fiber responders within the mouse intestine microbiota. Microbiome. 2020;8:5–14.
Zhou Okay. Methods to advertise abundance of Akkermansia muciniphila, an rising probiotics within the intestine, proof from dietary intervention research. J Funct Meals. 2017;33:194–201.
Wu G, Zhao N, Zhang C, Lam YY, Zhao L. Guild-based evaluation for understanding intestine microbiome in human well being and illnesses. Genome Med. 2021;13:22.
Patnode ML, Beller ZW, Han ND, Cheng J, Peters SL, Terrapon N, et al. Interspecies competitors impacts focused manipulation of human intestine micro organism by fiber-derived glycans. Cell. 2019;179:59–73.
Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela Okay, Duncan SH, et al. Influence of food regimen and particular person variation on intestinal microbiota composition and fermentation merchandise in overweight males. ISME J. 2014;8:2218–30.
Sze MA, Topçuoğlu BD, Lesniak NA, Ruffin MT, Schloss PD. Fecal short-chain fatty acids will not be predictive of colonic tumor standing and can’t be predicted based mostly on bacterial group construction. mBio. 2019;10:e1419–54.
Li L, Abou-Samra E, Ning Z, Zhang X, Mayne J, Wang J, et al. An in vitro mannequin sustaining taxon-specific useful actions of the intestine microbiome. Nat Commun. 2019;10:4146.
Bucci V, Tzen B, Li N, Simmons M, Tanoue T, Bogart E, et al. MDSINE: Microbial Dynamical Techniques INference Engine for microbiome time-series analyses. Genome Biol. 2016;17:121.
Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517:205–8.
Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, et al. The Mouse Intestinal Bacterial Assortment (miBC) gives host-specific perception into cultured range and useful potential of the intestine microbiota. Nat Microbiol. 2016;1:16131.
Xiao Y, Angulo MT, Lao S, Weiss ST, Liu Y. An ecological framework to grasp the efficacy of fecal microbiota transplantation. Nat Commun. 2020;11:3329.
Worthen WB, Moore JL. Increased-order interactions and oblique results: a decision utilizing laboratory Drosophila communities. Am Nat. 1991;138:1092–104.
Atkinson G, Batterham AM. True and false interindividual variations within the physiological response to an intervention. Exp Physiol. 2015;100:577–88.
Schloss PD. Figuring out and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome analysis. mBio. 2018;9:e00525.
Baxter NT, Lesniak NA, Sinani H, Schloss PD, Koropatkin NM. The glucoamylase inhibitor acarbose has a diet-dependent and reversible impact on the murine intestine microbiome. mSphere. 2019;4:e00528.
Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive teams of micro organism throughout the human colonic microbiota. ISME J. 2011;5:220–30.
Hiel S, Bindels LB, Pachikian BD, Kalala G, Broers V, Zamariola G, et al. Results of a food regimen based mostly on inulin-rich greens on intestine well being and dietary habits in wholesome people. Am J Clin Nutr. 2019;109:1683–95.
Nordgaard I, Hove H, Clausen MR, Mortensen PB. Colonic manufacturing of butyrate in sufferers with earlier colonic most cancers throughout long-term therapy with dietary fibre (Plantago ovata seeds). Scand J Gastroenterol. 1996;31:1011–20.
Sakata T. Pitfalls in short-chain fatty acid analysis: a methodological assessment. Anim Sci J. 2019;90:3–13.
McNeil NI, Cummings JH, James WP. Quick chain fatty acid absorption by the human giant gut. Intestine. 1978;19:819–22.
Wu RY, Määttänen P, Napper S, Scruten E, Li B, Koike Y, et al. Non-digestible oligosaccharides immediately regulate host kinome to modulate host inflammatory responses with out alterations within the intestine microbiota. Microbiome. 2017;5:135.
Gurry T, Nguyen L, Yu X, Alm EJ. Practical heterogeneity within the fermentation capabilities of the wholesome human intestine microbiota. PLoS ONE. 2021;16:e254004.
Johnson AJ, Zheng JJ, Kang JW, Saboe A, Knights D, Zivkovic AM. A information to diet-microbiome examine design. Entrance Nutr. 2020;7:79.
Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. An unique metabolic area of interest allows pressure engraftment within the intestine microbiota. Nature. 2018;557:434–8.
Kumar M, Ji B, Zengler Okay, Nielsen J. Modelling approaches for learning the microbiome. Nat Microbiol. 2019;4:1253–67.
Gowda Okay, Ping D, Mani M, Kuehn S. Genomic construction predicts metabolite dynamics in microbial communities. Cell. 2022;185:530–46.
Qian Y, Lan F, Venturelli OS. In the direction of a deeper understanding of microbial communities: integrating experimental knowledge with dynamic fashions. Curr Opin Microbiol. 2021;62:84–92.
Kolodziejczyk AA, Zheng D, Elinav E. Food plan-microbiota interactions and customized vitamin. Nat Rev Microbiol. 2019;17:742–53.
Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to categorise genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.
Zhang S, Wang H, Zhu M. A delicate GC/MS detection methodology for analyzing microbial metabolites quick chain fatty acids in fecal and serum samples. Talanta. 2019;196:249–54.
Cai J, Zhang J, Tian Y, Zhang L, Hatzakis E, Krausz KW, et al. Orthogonal comparability of GC–MS and 1H NMR spectroscopy for brief chain fatty acid quantitation. Anal Chem. 2017;89:7900–6.
Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela Okay. Quantitative PCR gives a easy and accessible methodology for quantitative microbiota profiling. PLoS ONE. 2020;15:e227285.
Liu H, Zeng X, Zhang G, Hou C, Li N, Yu H, et al. Maternal milk and fecal microbes information the spatiotemporal improvement of mucosa-associated microbiota and barrier perform within the porcine neonatal intestine. Bmc Biol. 2019;17:106.
Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic enchancment of amplicon marker gene strategies for elevated accuracy in microbiome research. Nat Biotechnol. 2016;34:942–9.
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Analysis of common 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based range research. Nucleic Acids Res. 2013;41:e1.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome knowledge science utilizing QIIME 2. Nat Biotechnol. 2019;37:852–7.
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Easy statistical identification and elimination of contaminant sequences in marker-gene and metagenomics knowledge. Microbiome. 2018;6:226.
Hsieh TC, Ma KH, Chao A. iNEXT: an R bundle for rarefaction and extrapolation of species range (Hill numbers). Strategies Ecol Evol. 2016;7:1451–6.
Wooden DE, Lu J, Langmead B. Improved metagenomic evaluation with Kraken 2. Genome Biol. 2019;20:257.
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a brand new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
Zhao Z, Baltar F, Herndl GJ. Linking extracellular enzymes to phylogeny signifies a predominantly particle-associated life-style of deep-sea prokaryotes. Sci Adv. 2020;6:z4354.
Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation web site identification. Bmc Bioinform. 2010;11:119.
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing knowledge. Bioinform. 2012;28:3150–2.
Clausen PTLC, Aarestrup FM, Lund O. Speedy and exact alignment of uncooked reads towards redundant databases with KMA. Bmc Bioinform. 2018;19:307.
Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.
Nissen JN, Johansen J, Allesøe RL, Sønderby CK, Armenteros JJA, Grønbech CH, et al. Improved metagenome binning and meeting utilizing deep variational autoencoders. Nat Biotechnol. 2021;39:555–60.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the standard of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
Stewart RD, Auffret MD, Roehe R, Watson M. Open prediction of polysaccharide utilisation loci (PUL) in 5414 public Bacteroidetes genomes utilizing PULpy. 2018. https://www.biorxiv.org/content material/10.1101/421024v1.full.
Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Gohl DM, Beckman KB, et al. Evaluating the knowledge content material of shallow shotgun metagenomics. mSystems. 2018;3:e00069–18
Al-Ghalith GA, Hillmann B, Ang Okay, Shields-Cutler R, Knights D. SHI7 is a self-learning pipeline for multipurpose short-read DNA high quality management. mSystems. 2018;3:e00202.
McDonald JH. Handbook of organic statistics, vol. Baltimore, MD: Sparky Home Publishing; 2009.
Bashan A, Gibson TE, Friedman J, Carey VJ, Weiss ST, Hohmann EL, et al. Universality of human microbial dynamics. Nature. 2016;534:259–62.
Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: a probabilistic programming language. Grantee Submission. 2017;76:1–32.