Dienstag, August 2, 2022
StartMicrobiologyEcological dynamics of the intestine microbiome in response to dietary fiber

Ecological dynamics of the intestine microbiome in response to dietary fiber


  • Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Quick-chain fatty acids stimulate glucagon-like peptide-1 secretion through the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R. Regulation of irritation by quick chain fatty acids. Vitamins. 2011;3:858–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the intestine microbiota. Science. 2018;362:t9076.

    Article 
    CAS 

    Google Scholar
     

  • Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. Causal relationships among the many intestine microbiome, short-chain fatty acids and metabolic illnesses. Nat Genet. 2019;51:600–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Quick chain fatty acids (SCFAs)-mediated intestine epithelial and immune regulation and its relevance for inflammatory bowel illnesses. Entrance Immunol. 2019;10:277.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Intestine micro organism selectively promoted by dietary fibers alleviate kind 2 diabetes. Science. 2018;359:1151–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sitkin S, Vakhitov T, Pokrotnieks J. The right way to enhance the butyrate-producing capability of the intestine microbiome: do IBD sufferers really want butyrate substitute and butyrogenic remedy? J Crohn’s Colitis. 2018;12:881–2.

    Article 

    Google Scholar
     

  • Lordan C, Thapa D, Ross RP, Cotter PD. Potential for enriching next-generation health-promoting intestine micro organism by prebiotics and different dietary elements. Intestine Microbes. 2019;11:1–20.

  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Food plan quickly and reproducibly alters the human intestine microbiome. Nature. 2014;505:559–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Singh V, Yeoh BS, Walker RE, Xiao X, Saha P, Golonka RM, et al. Microbiota fermentation-NLRP3 axis shapes the influence of dietary fibres on intestinal irritation. Intestine. 2019;68:1801–12.

  • Healey G, Murphy R, Butts C, Brough L, Whelan Okay, Coad J. Routine dietary fibre consumption influences intestine microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention examine. Brit J Nutr. 2018;119:176–89.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C, Schmidt TM. Dynamics of human intestine microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio. 2019;10:e02566–18.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deehan EC, Yang C, Perez-Muñoz ME, Nguyen NK, Cheng CC, Triador L, et al. Precision microbiome modulation with discrete dietary fiber buildings directs short-chain fatty acid manufacturing. Cell Host Microbe. 2020;27:389–404.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome. 2016;4:33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nguyen NK, Deehan EC, Zhang Z, Jin M, Baskota N, Perez-Muñoz ME, et al. Intestine microbiota modulation with long-chain corn bran arabinoxylan in adults with chubby and weight problems is linked to an individualized temporal enhance in fecal propionate. Microbiome. 2020;8:118.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch within the human colon. ISME J. 2012;6:1535–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lahti L, Salojarvi J, Salonen A, Scheffer M, de Vos WM. Tipping components within the human intestinal ecosystem. Nat Commun. 2014;5:4344.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rodriguez J, Hiel S, Neyrinck AM, Le Roy T, Pötgens SA, Leyrolle Q, et al. Discovery of the intestine microbial signature driving the efficacy of prebiotic intervention in overweight sufferers. Intestine. 2020;69:1975–87.

  • Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary fiber-induced enchancment in glucose metabolism is related to elevated abundance of Prevotella. Cell Metab. 2015;22:971–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competitors, and stability. Science. 2015;350:663–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Davis LMG, Martínez I, Walter J, Goin C, Hutkins RW. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides leads to a extremely particular bifidogenic response in people. PLoS ONE. 2011;6:e25200.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Solden LM, Naas AE, Roux S, Daly RA, Collins WB, Nicora CD, et al. Interspecies cross-feeding orchestrates carbon degradation within the rumen ecosystem. Nat Microbiol. 2018;3:1274–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rakoff-Nahoum S, Coyne MJ, Comstock LE. An ecological community of polysaccharide utilization amongst human intestinal symbionts. Curr Biol. 2014;24:40–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rao C, Coyte KZ, Bainter W, Geha RS, Martin CR, Rakoff-Nahoum S. Multi-kingdom ecological drivers of microbiota meeting in preterm infants. Nature. 2021;591:633–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Koskella B, Corridor LJ, Metcalf C. The microbiome past the horizon of ecological and evolutionary principle. Nat Ecol Evol. 2017;1:1606–15.

    PubMed 
    Article 

    Google Scholar
     

  • Goldford JE, Lu N, Bajic D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial group meeting. Science. 2018;361:469–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ortiz A, Vega NM, Ratzke C, Gore J. Interspecies bacterial competitors regulates group meeting within the C. elegans gut. ISME J. 2021;15:2131–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu Z, de Vries B, Gerritsen J, Smidt H, Zoetendal EG. Microbiome-based stratification to information dietary interventions to enhance human well being. Nutr Res. 2020;82:1–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahmed W, Rashid S. Practical and therapeutic potential of inulin: a complete assessment. Crit Rev Meals Sci Nutr. 2019;59:1–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cerqueira FM, Photenhauer AL, Pollet RM, Brown HA, Koropatkin NM. Starch digestion by intestine micro organism: crowdsourcing for carbs. Tendencies Microbiol. 2019;28:95–108.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Parker KD, Albeke SE, Gigley JP, Goldstein AM, Ward NL. Microbiome composition in each wild-type and illness mannequin mice is closely influenced by mouse facility. Entrance Microbiol. 2018;9:1598.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ericsson AC, Davis JW, Spollen W, Bivens N, Givan S, Hagan CE, et al. Results of vendor and genetic background on the composition of the fecal microbiota of inbred mice. PLoS ONE. 2015;10:e116704.

    Article 
    CAS 

    Google Scholar
     

  • Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R, et al. A novel sparse compositional method reveals microbial perturbations. mSystems. 2019;4:e00016–19.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lagkouvardos I, Lesker TR, Hitch TCA, Gálvez EJC, Smit N, Neuhaus Okay, et al. Sequence and cultivation examine of Muribaculaceae reveals novel species, host desire, and useful potential of this but undescribed household. Microbiome. 2019;7:28.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pereira FC, Wasmund Okay, Cobankovic I, Jehmlich N, Herbold CW, Lee KS, et al. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun. 2020;11:5104.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A brand new genomic blueprint of the human intestine microbiota. Nature. 2019;568:499–504.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu GD, Chen J, Hoffmann C, Bittinger Okay, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with intestine microbial enterotypes. Science. 2011;334:105–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Creswell R, Tan J, Leff JW, Brooks B, Mahowald MA, Thieroff-Ekerdt R, et al. Excessive-resolution temporal profiling of the human intestine microbiome reveals constant and cascading alterations in response to dietary glycans. Genome Med. 2020;12:59.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mackevicius EL, Bahle AH, Williams AH, Gu S, Denisenko NI, Goldman MS, et al. Unsupervised discovery of temporal sequences in high-dimensional datasets, with functions to neuroscience. Elife. 2019;8:e38471.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morjaria S, Schluter J, Taylor BP, Littmann ER, Carter RA, Fontana E, et al. Antibiotic-induced shifts in fecal microbiota density and composition throughout hematopoietic stem cell transplantation. Infect Immun. 2019;87:e00206.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stein RR, Bucci V, Toussaint NC, Buffie CG, Ratsch G, Pamer EG, et al. Ecological modeling from time-series inference: perception into dynamics and stability of intestinal microbiota. PLoS Comput Biol. 2013;9:e1003388.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation throughout the intestine microbiota. Nature. 2016;533:255–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human intestine microbiota. Nat Rev Microbiol. 2012;10:323–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chijiiwa R, Hosokawa M, Kogawa M, Nishikawa Y, Ide Okay, Sakanashi C, et al. Single-cell genomics of uncultured micro organism reveals dietary fiber responders within the mouse intestine microbiota. Microbiome. 2020;8:5–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou Okay. Methods to advertise abundance of Akkermansia muciniphila, an rising probiotics within the intestine, proof from dietary intervention research. J Funct Meals. 2017;33:194–201.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu G, Zhao N, Zhang C, Lam YY, Zhao L. Guild-based evaluation for understanding intestine microbiome in human well being and illnesses. Genome Med. 2021;13:22.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patnode ML, Beller ZW, Han ND, Cheng J, Peters SL, Terrapon N, et al. Interspecies competitors impacts focused manipulation of human intestine micro organism by fiber-derived glycans. Cell. 2019;179:59–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela Okay, Duncan SH, et al. Influence of food regimen and particular person variation on intestinal microbiota composition and fermentation merchandise in overweight males. ISME J. 2014;8:2218–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sze MA, Topçuoğlu BD, Lesniak NA, Ruffin MT, Schloss PD. Fecal short-chain fatty acids will not be predictive of colonic tumor standing and can’t be predicted based mostly on bacterial group construction. mBio. 2019;10:e1419–54.

    Article 

    Google Scholar
     

  • Li L, Abou-Samra E, Ning Z, Zhang X, Mayne J, Wang J, et al. An in vitro mannequin sustaining taxon-specific useful actions of the intestine microbiome. Nat Commun. 2019;10:4146.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bucci V, Tzen B, Li N, Simmons M, Tanoue T, Bogart E, et al. MDSINE: Microbial Dynamical Techniques INference Engine for microbiome time-series analyses. Genome Biol. 2016;17:121.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517:205–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, et al. The Mouse Intestinal Bacterial Assortment (miBC) gives host-specific perception into cultured range and useful potential of the intestine microbiota. Nat Microbiol. 2016;1:16131.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiao Y, Angulo MT, Lao S, Weiss ST, Liu Y. An ecological framework to grasp the efficacy of fecal microbiota transplantation. Nat Commun. 2020;11:3329.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Worthen WB, Moore JL. Increased-order interactions and oblique results: a decision utilizing laboratory Drosophila communities. Am Nat. 1991;138:1092–104.

    Article 

    Google Scholar
     

  • Atkinson G, Batterham AM. True and false interindividual variations within the physiological response to an intervention. Exp Physiol. 2015;100:577–88.

    PubMed 
    Article 

    Google Scholar
     

  • Schloss PD. Figuring out and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome analysis. mBio. 2018;9:e00525.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baxter NT, Lesniak NA, Sinani H, Schloss PD, Koropatkin NM. The glucoamylase inhibitor acarbose has a diet-dependent and reversible impact on the murine intestine microbiome. mSphere. 2019;4:e00528.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive teams of micro organism throughout the human colonic microbiota. ISME J. 2011;5:220–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hiel S, Bindels LB, Pachikian BD, Kalala G, Broers V, Zamariola G, et al. Results of a food regimen based mostly on inulin-rich greens on intestine well being and dietary habits in wholesome people. Am J Clin Nutr. 2019;109:1683–95.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nordgaard I, Hove H, Clausen MR, Mortensen PB. Colonic manufacturing of butyrate in sufferers with earlier colonic most cancers throughout long-term therapy with dietary fibre (Plantago ovata seeds). Scand J Gastroenterol. 1996;31:1011–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sakata T. Pitfalls in short-chain fatty acid analysis: a methodological assessment. Anim Sci J. 2019;90:3–13.

    PubMed 
    Article 

    Google Scholar
     

  • McNeil NI, Cummings JH, James WP. Quick chain fatty acid absorption by the human giant gut. Intestine. 1978;19:819–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu RY, Määttänen P, Napper S, Scruten E, Li B, Koike Y, et al. Non-digestible oligosaccharides immediately regulate host kinome to modulate host inflammatory responses with out alterations within the intestine microbiota. Microbiome. 2017;5:135.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gurry T, Nguyen L, Yu X, Alm EJ. Practical heterogeneity within the fermentation capabilities of the wholesome human intestine microbiota. PLoS ONE. 2021;16:e254004.

    Article 
    CAS 

    Google Scholar
     

  • Johnson AJ, Zheng JJ, Kang JW, Saboe A, Knights D, Zivkovic AM. A information to diet-microbiome examine design. Entrance Nutr. 2020;7:79.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. An unique metabolic area of interest allows pressure engraftment within the intestine microbiota. Nature. 2018;557:434–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kumar M, Ji B, Zengler Okay, Nielsen J. Modelling approaches for learning the microbiome. Nat Microbiol. 2019;4:1253–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gowda Okay, Ping D, Mani M, Kuehn S. Genomic construction predicts metabolite dynamics in microbial communities. Cell. 2022;185:530–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qian Y, Lan F, Venturelli OS. In the direction of a deeper understanding of microbial communities: integrating experimental knowledge with dynamic fashions. Curr Opin Microbiol. 2021;62:84–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kolodziejczyk AA, Zheng D, Elinav E. Food plan-microbiota interactions and customized vitamin. Nat Rev Microbiol. 2019;17:742–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to categorise genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.

    PubMed Central 

    Google Scholar
     

  • Zhang S, Wang H, Zhu M. A delicate GC/MS detection methodology for analyzing microbial metabolites quick chain fatty acids in fecal and serum samples. Talanta. 2019;196:249–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cai J, Zhang J, Tian Y, Zhang L, Hatzakis E, Krausz KW, et al. Orthogonal comparability of GC–MS and 1H NMR spectroscopy for brief chain fatty acid quantitation. Anal Chem. 2017;89:7900–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela Okay. Quantitative PCR gives a easy and accessible methodology for quantitative microbiota profiling. PLoS ONE. 2020;15:e227285.

    Article 
    CAS 

    Google Scholar
     

  • Liu H, Zeng X, Zhang G, Hou C, Li N, Yu H, et al. Maternal milk and fecal microbes information the spatiotemporal improvement of mucosa-associated microbiota and barrier perform within the porcine neonatal intestine. Bmc Biol. 2019;17:106.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic enchancment of amplicon marker gene strategies for elevated accuracy in microbiome research. Nat Biotechnol. 2016;34:942–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Analysis of common 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based range research. Nucleic Acids Res. 2013;41:e1.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome knowledge science utilizing QIIME 2. Nat Biotechnol. 2019;37:852–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Easy statistical identification and elimination of contaminant sequences in marker-gene and metagenomics knowledge. Microbiome. 2018;6:226.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hsieh TC, Ma KH, Chao A. iNEXT: an R bundle for rarefaction and extrapolation of species range (Hill numbers). Strategies Ecol Evol. 2016;7:1451–6.

    Article 

    Google Scholar
     

  • Wooden DE, Lu J, Langmead B. Improved metagenomic evaluation with Kraken 2. Genome Biol. 2019;20:257.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a brand new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhao Z, Baltar F, Herndl GJ. Linking extracellular enzymes to phylogeny signifies a predominantly particle-associated life-style of deep-sea prokaryotes. Sci Adv. 2020;6:z4354.

    Article 
    CAS 

    Google Scholar
     

  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation web site identification. Bmc Bioinform. 2010;11:119.

    Article 
    CAS 

    Google Scholar
     

  • Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing knowledge. Bioinform. 2012;28:3150–2.

    CAS 
    Article 

    Google Scholar
     

  • Clausen PTLC, Aarestrup FM, Lund O. Speedy and exact alignment of uncooked reads towards redundant databases with KMA. Bmc Bioinform. 2018;19:307.

    Article 
    CAS 

    Google Scholar
     

  • Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nissen JN, Johansen J, Allesøe RL, Sønderby CK, Armenteros JJA, Grønbech CH, et al. Improved metagenome binning and meeting utilizing deep variational autoencoders. Nat Biotechnol. 2021;39:555–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the standard of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stewart RD, Auffret MD, Roehe R, Watson M. Open prediction of polysaccharide utilisation loci (PUL) in 5414 public Bacteroidetes genomes utilizing PULpy. 2018. https://www.biorxiv.org/content material/10.1101/421024v1.full.

  • Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Gohl DM, Beckman KB, et al. Evaluating the knowledge content material of shallow shotgun metagenomics. mSystems. 2018;3:e00069–18

  • Al-Ghalith GA, Hillmann B, Ang Okay, Shields-Cutler R, Knights D. SHI7 is a self-learning pipeline for multipurpose short-read DNA high quality management. mSystems. 2018;3:e00202.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McDonald JH. Handbook of organic statistics, vol. Baltimore, MD: Sparky Home Publishing; 2009.

  • Bashan A, Gibson TE, Friedman J, Carey VJ, Weiss ST, Hohmann EL, et al. Universality of human microbial dynamics. Nature. 2016;534:259–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: a probabilistic programming language. Grantee Submission. 2017;76:1–32.


    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments