Sonntag, Juli 31, 2022
StartMicrobiologyEcological modelling approaches for predicting emergent properties in microbial communities

Ecological modelling approaches for predicting emergent properties in microbial communities


  • Cho, I. & Blaser, M. J. The human microbiome: on the interface of well being and illness. Nat. Rev. Genet. 13, 260–270 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shi, Z. Intestine microbiota: an vital hyperlink between Western weight-reduction plan and power illnesses. Vitamins 11, 2287 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lynch, S. V. & Pedersen, O. The human intestinal microbiome in well being and illness. N. Engl. J. Med. 375, 2369–2379 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Glowacki, R. W. P. & Martens, E. C. In illness and well being: results of intestine microbial metabolites on human physiology. PLoS Pathog. 16, e1008370 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nazaries, L. et al. Proof of microbial regulation of biogeochemical cycles from a research on methane flux and land use change. Appl. Environ. Microbiol. 79, 4031–4040 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Konopka, A. What’s microbial group ecology? ISME J. 3, 1223–1230 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Flemming, H.-C. et al. Biofilms: an emergent type of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bauer, E., Zimmermann, J., Baldini, F., Thiele, I. & Kaleta, C. BacArena: individual-based metabolic modeling of heterogeneous microbes in advanced communities. PLoS Comput. Biol. 13, e1005544 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • van Hoek, M. J. A. & Merks, R. M. H. Emergence of microbial range because of cross-feeding interactions in a spatial mannequin of intestine microbial metabolism. BMC Syst. Biol. 11, 56 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gorter, F. A., Manhart, M. & Ackermann, M. Understanding the evolution of interspecies interactions in microbial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190256 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, J., Yoshinaga, M. & Rosen, B. P. The antibiotic motion of methylarsenite is an emergent property of microbial communities. Mol. Microbiol. 111, 487–494 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Konstantinidis, D. et al. Adaptive laboratory evolution of microbial co-cultures for improved metabolite secretion. Mol. Syst. Biol. 17, e10189 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park, H. et al. Synthetic consortium demonstrates emergent properties of enhanced cellulosic-sugar degradation and biofuel synthesis. NPJ Biofilms Microbiomes 6, 59 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schwartzman, J. A. et al. Bacterial progress in multicellular aggregates results in the emergence of advanced lifecycles. Preprint at bioRxiv https://doi.org/10.1101/2021.11.01.466752 (2021).

  • Levins, R. & Lewontin, R. The Dialectical Biologist (Harvard Univ. Press, 1985).

  • Diaz, P. I. & Valm, A. M. Microbial interactions in oral communities mediate emergent biofilm properties. J. Dent. Res. 99, 18–25 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Buerger, A. N. et al. Gastrointestinal dysbiosis following diethylhexyl phthalate publicity in zebrafish (Danio rerio): altered microbial range, performance, and community connectivity. Environ. Pollut. 265, 114496 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim, M. Okay., Ingremeau, F., Zhao, A., Bassler, B. L. & Stone, H. A. Native and international penalties of move on bacterial quorum sensing. Nat. Microbiol. 1, 15005 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ebrahimi, A. & Or, D. Hydration and diffusion processes form microbial group group and performance in mannequin soil aggregates. Water Resour. Res. 51, 9804–9827 (2015).

    Article 

    Google Scholar
     

  • Falconer, R. E. et al. Microscale heterogeneity explains experimental variability and non-linearity in soil natural matter mineralisation. PLoS ONE 10, e0123774 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fredrickson, J. Okay. Ecological communities by design. Science 348, 1425–1427 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Singer, E. et al. Subsequent technology sequencing information of an outlined microbial mock group. Sci. Knowledge 3, 160081 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marino, S., Baxter, N. T., Huffnagle, G. B., Petrosino, J. F. & Schloss, P. D. Mathematical modeling of main succession of murine intestinal microbiota. Proc. Natl Acad. Sci. USA 111, 439–444 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cariboni, J., Gatelli, D., Liska, R. & Saltelli, A. The position of sensitivity evaluation in ecological modelling. Ecol. Modell. 203, 167–182 (2007).

    Article 

    Google Scholar
     

  • Oreskes, N., Shrader-Frechette, Okay. & Belitz, Okay. Verification, validation, and affirmation of numerical fashions within the Earth sciences. Science 263, 641–646 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Machado, D., Andrejev, S., Tramontano, M. & Patil, Okay. R. Quick automated reconstruction of genome-scale metabolic fashions for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hammarlund, S. P., Chacón, J. M. & Harcombe, W. R. A shared limiting useful resource results in aggressive exclusion in a cross-feeding system. Environ. Microbiol. 21, 759–771 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Coyte, Okay. Z., Schluter, J. & Foster, Okay. R. The ecology of the microbiome: networks, competitors, and stability. Science 350, 663–666 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Machado, D. et al. Polarization of microbial communities between aggressive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Present standing and purposes of genome-scale metabolic fashions. Genome Biol. 20, 121 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • O’Brien, E. J., Monk, J. M. & Palsson, B. O. Utilizing genome-scale fashions to foretell organic capabilities. Cell 161, 971–987 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fang, X., Lloyd, C. J. & Palsson, B. O. Reconstructing organisms in silico: genome-scale fashions and their rising purposes. Nat. Rev. Microbiol. 18, 731–743 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Colarusso, A. V., Goodchild-Michelman, I., Rayle, M. & Zomorrodi, A. R. Computational modeling of metabolism in microbial communities on a genome-scale. Curr. Opin. Syst. Biol. 26, 46–57 (2021).

    Article 

    Google Scholar
     

  • García-Jiménez, B., Torres-Bacete, J. & Nogales, J. Metabolic modelling approaches for describing and engineering microbial communities. Comput. Struct. Biotechnol. J. 19, 226–246 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Frioux, C., Singh, D., Korcsmaros, T. & Hildebrand, F. From bag-of-genes to bag-of-genomes: metabolic modelling of communities within the period of metagenome-assembled genomes. Comput. Struct. Biotechnol. J. 18, 1722–1734 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chaffron, S., Rehrauer, H., Pernthaler, J. & von Mering, C. A world community of coexisting microbes from environmental and whole-genome sequence information. Genome Res. 20, 947–959 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Faust, Okay. & Raes, J. Microbial interactions: from networks to fashions. Nat. Rev. Microbiol. 10, 538–550 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, J. et al. Distinct mechanisms form soil bacterial and fungal co-occurrence networks in a mountain ecosystem. FEMS Microbiol. Ecol. 96, fiaa030 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Entrance. Microbiol. 5, 219 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stein, R. R. et al. Ecological modeling from time-series inference: perception into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Barbier, M., Arnoldi, J.-F., Bunin, G. & Loreau, M. Generic meeting patterns in advanced ecological communities. Proc. Natl Acad. Sci. USA 115, 2156–2161 (2018).

  • Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic interactions and the drivers of microbial group meeting. Curr. Biol. 30, R1176–R1188 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Madeo, D., Comolli, L. R. & Mocenni, C. Emergence of microbial networks as response to hostile environments. Entrance. Microbiol. 5, 407 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ratzke, C. & Gore, J. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol. 16, e2004248 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang, B. & Allison, S. D. Emergent properties of natural matter decomposition by soil enzymes. Soil Biol. Biochem. 136, 107522 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Walsh, A. M. et al. Microbial succession and taste manufacturing within the fermented dairy beverage kefir. mSystems 1, e00052-16 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oliveira, N. M., Niehus, R. & Foster, Okay. R. Evolutionary limits to cooperation in microbial communities. Proc. Natl Acad. Sci. USA 111, 17941–17946 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Leigh, E. R. in Some Mathematical Issues in Biology (ed. Gerstenhaber, M.) 1–61 (American Mathematical Society, 1968).

  • Nedorezov, L. The dynamics of the lynx–hare system: an software of the Lotka–Volterra mannequin. Biophys. 61, 149–154 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Mühlbauer, L. Okay., Schulze, M., Harpole, W. S. & Clark, A. T. gauseR: easy strategies for becoming Lotka–Volterra fashions describing Gause’s “wrestle for existence”. Ecol. Evol. 10, 13275–13283 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Belovsky, G. E. Moose and snowshoe hare competitors and a mechanistic rationalization from foraging idea. Oecologia 61, 150–159 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Could, R. M. Restrict cycles in predator–prey communities. Science 177, 900–902 (1972).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Friedman, J., Higgins, L. M. & Gore, J. Group construction follows easy meeting guidelines in microbial microcosms. Nat. Ecol. Evol. 1, 109 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Voit, E. O., Davis, J. D. & Olivença, D. V. Inference and validation of the construction of Lotka–Volterra fashions. Preprint at bioXriv https://doi.org/10.1101/2021.08.14.456346 (2021).

  • Bucci, V. & Xavier, J. B. In direction of predictive fashions of the human intestine microbiome. J. Mol. Biol. 426, 3907–3916 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fisher, C. Okay. & Mehta, P. Figuring out keystone species within the human intestine microbiome from metagenomic timeseries utilizing sparse linear regression. PLoS ONE 9, e102451 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bucci, V. et al. MDSINE: Microbial Dynamical Methods INference Engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gao, X., Huynh, B.-T., Guillemot, D., Glaser, P. & Opatowski, L. Inference of serious microbial interactions from longitudinal metagenomics information. Entrance. Microbiol. 9, 2319 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, C. et al. An expectation-maximization algorithm allows correct ecological modeling utilizing longitudinal microbiome sequencing information. Microbiome 7, 118 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Joseph, T. A., Shenhav, L., Xavier, J. B., Halperin, E. & Pe’er, I. Compositional Lotka–Volterra describes microbial dynamics within the simplex. PLoS Comput. Biol. 16, e1007917 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hosoda, S., Fukunaga, T. & Hamada, M. Umibato: estimation of time-varying microbial interplay utilizing continuous-time regression hidden Markov mannequin. Bioinformatics 37, i16–i24 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Remien, C. H., Eckwright, M. J. & Ridenhour, B. J. Structural identifiability of the generalized Lotka–Volterra mannequin for microbiome research. R. Soc. Open Sci. 8, 201378 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • White, J. R. Novel Strategies for Metagenomic Evaluation. PhD thesis, Univ. of Maryland (2010).

  • Sousa, A., Frazão, N., Ramiro, R. S. & Gordo, I. Evolution of commensal micro organism within the intestinal tract of mice. Curr. Opin. Microbiol. 38, 114–121 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Mounier, J. et al. Microbial interactions inside a cheese microbial group. Appl. Environ. Microbiol. 74, 172–181 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Momeni, B., Xie, L. & Shou, W. Lotka–Volterra pairwise modeling fails to seize numerous pairwise microbial interactions. eLife 6, e25051 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hoek, T. A. et al. Useful resource availability modulates the cooperative and aggressive nature of a microbial cross-feeding mutualism. PLoS Biol. 14, e1002540 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl Acad. Sci. USA 116, 15979–15984 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mai, T. S. N. Impression of Metabolic Plasticity on Microbial Group Variety and Stability. MSc thesis, Univ. of Groningen (2021).

  • Sanchez-Gorostiaga, A., Bajić, D., Osborne, M. L., Poyatos, J. F. & Sanchez, A. Excessive-order interactions distort the practical panorama of microbial consortia. PLoS Biol. 17, e3000550 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mickalide, H. & Kuehn, S. Greater-order interplay between species inhibits bacterial invasion of a phototroph-predator microbial group. Cell Syst. 9, 521–533.e10 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo, X. & Boedicker, J. Q. The contribution of high-order metabolic interactions to the worldwide exercise of a four-species microbial group. PLoS Comput. Biol. 12, e1005079 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Meroz, N., Tovi, N., Sorokin, Y. & Friedman, J. Group composition of microbial microcosms follows easy meeting guidelines at evolutionary timescales. Nat. Commun. 12, 2891 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zomorrodi, A. R. & Segrè, D. Artificial ecology of microbes: mathematical fashions and purposes. J. Mol. Biol. 428, 837–861 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tune, H. S., Cannon, W. R., Beliaev, A. S. & Konopka, A. Mathematical modeling of microbial group dynamics: a methodological assessment. Processes 2, 711–752 (2014).

    Article 

    Google Scholar
     

  • Descheemaeker, L., Grilli, J. & de Buyl, S. Heavy-tailed abundance distributions from stochastic Lotka–Volterra fashions. Phys. Rev. E 104, 034404 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bairey, E., Kelsic, E. D. & Kishony, R. Excessive-order species interactions form ecosystem range. Nat. Commun. 7, 12285 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ji, B., Herrgård, M. J. & Nielsen, J. Microbial group dynamics revisited. Nat. Comput. Sci. 1, 640–641 (2021).

    Article 

    Google Scholar
     

  • Abreu, C. I., Anderen Woltz, V. L., Friedman, J. & Gore, J. Microbial communities show different steady states in a fluctuating surroundings. PLoS Comput. Biol. 16, e1007934 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu, L., Xu, X., Kong, D., Gu, H. & Kenney T. Stochastic generalized Lotka–Volterra mannequin with an software to studying microbial group constructions. Preprint at arXiv https://doi.org/10.48550/arXiv.2009.10922 (2020).

  • Brunner, J. D. & Chia, N. Metabolite-mediated modelling of microbial group dynamics captures emergent behaviour extra successfully than species–species modelling. J. R. Soc. Interface 16, 20190423 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • MacArthur, R. Species packing and aggressive equilibrium for a lot of species. Theor. Popul. Biol. 1, 1–11 (1970).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tilman, D. Useful resource competitors and group construction. Monogr. Popul. Biol. 17, 1–296 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • Chesson, P. MacArthur’s consumer-resource mannequin. Theor. Popul. Biol. 37, 26–38 (1990).

    Article 

    Google Scholar
     

  • Goldford, J. E. et al. Emergent simplicity in microbial group meeting. Science 361, 469–474 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marsland, R.third et al. Out there power fluxes drive a transition within the range, stability, and practical construction of microbial communities. PLoS Comput. Biol. 15, e1006793 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marsland, R.third, Cui, W. & Mehta, P. A minimal mannequin for microbial biodiversity can reproduce experimentally noticed ecological patterns. Sci. Rep. 10, 3308 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Estrela, S., Sanchez-Gorostiaga, A., Vila, J. C. & Sanchez, A. Nutrient dominance governs the meeting of microbial communities in blended nutrient environments. eLife 10, e65948 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cui, W., Marsland, R. & Mehta, P. Various communities behave like typical random ecosystems. Phys. Rev. E 104, 034416 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Haygood, R. Coexistence in MacArthur-style shopper–useful resource fashions. Theor. Popul. Biol. 61, 215–223 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • Dubinkina, V., Fridman, Y., Pandey, P. P. & Maslov, S. Multistability and regime shifts in microbial communities defined by competitors for important vitamins. eLife 8, e49720 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pacheco, A. R., Osborne, M. L. & Segrè, D. Non-additive microbial group responses to environmental complexity. Nat. Commun. 12, 2365 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in numerous microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Crowther, T. W. et al. Untangling the fungal area of interest: the trait-based method. Entrance. Microbiol. 5, 579 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pacciani-Mori, L., Suweis, S., Maritan, A. & Giometto, A. Constrained proteome allocation impacts coexistence in fashions of aggressive microbial communities. ISME J. 15, 1458–1477 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marsland, R. et al. The Group Simulator: a Python package deal for microbial ecology. PLoS ONE 15, e0230430 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Obadia, B. et al. Probabilistic invasion underlies pure intestine microbiome stability. Curr. Biol. 27, 1999–2006.e8 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • D’Andrea, R., Gibbs, T. & O’Dwyer, J. P. Emergent neutrality in consumer-resource dynamics. PLoS Comput. Biol. 16, e1008102 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mancuso, C. P., Lee, H., Abreu, C. I., Gore, J. & Khalil, A. S. Environmental fluctuations reshape an sudden diversity-disturbance relationship in a microbial group. eLife 10, e67175 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lajoie, G. & Kembel, S. W. Taking advantage of trait-based approaches for microbial ecology. Traits Microbiol. 27, 814–823 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zakharova, L., Meyer, Okay. M. & Seifan, M. Trait-based modelling in ecology: a assessment of twenty years of analysis. Ecol. Modell. 407, 108703 (2019).

    Article 

    Google Scholar
     

  • Merico, A., Brandt, G., Lan Smith, S. L. & Oliver, M. Sustaining range in trait-based fashions of phytoplankton communities. Entrance. Ecol. Evol. 2, 59 (2014).

  • Grigoratou, M. et al. A trait-based modelling method to planktonic foraminifera ecology. Biogeosciences 16, 1469–1492 (2019).

    Article 

    Google Scholar
     

  • Muscarella, M. E., Howey, X. M. & Lennon, J. T. Trait-based method to bacterial progress effectivity. Environ. Microbiol. 22, 3494–3504 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shao, P., Lynch, L., Xie, H., Bao, X. & Liang, C. Tradeoffs amongst microbial life historical past methods affect the destiny of microbial residues in subtropical forest soils. Soil Biol. Biochem. 153, 108112 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Malik, A. A. et al. Defining trait-based microbial methods with penalties for soil carbon biking underneath local weather change. ISME J. 14, 1–9 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Le Roux, X. et al. Predicting the responses of soil nitrite-oxidizers to multi-factorial international change: a trait-based method. Entrance. Microbiol. 7, 628 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bouskill, N. J., Tang, J., Riley, W. J. & Brodie, E. L. Trait-based illustration of organic nitrification: mannequin improvement, testing, and predicted group composition. Entrance. Microbiol. 3, 364 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kyker-Snowman, E., Wieder, W. R., Frey, S. D. & Grandy, A. S. Stoichiometrically coupled carbon and nitrogen biking within the MIcrobial-MIneral Carbon Stabilization mannequin model 1.0 (MIMICS-CN v1.0). Geosci. Mannequin Dev. 13, 4413–4434 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kruk, C. et al. A trait-based method predicting group meeting and dominance of microbial invasive species. Oikos 130, 571–586 (2021).

    Article 

    Google Scholar
     

  • Litchman, E., Ohman, M. D. & Kiørboe, T. Trait-based approaches to zooplankton communities. J. Plankton Res. 35, 473–484 (2013).

    Article 

    Google Scholar
     

  • Garcia, C. A. et al. Linking regional shifts in microbial genome adaptation with floor ocean biogeochemistry. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190254 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moreno, A. R., Hagstrom, G. I., Primeau, F. W., Levin, S. A. & Martiny, A. C. Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient provide, temperature, and atmospheric CO2. Biogeosciences 15, 2761–2779 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a mannequin ocean. Science 315, 1843–1846 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Coles, V. J. et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358, 1149–1154 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ratzke, C., Barrere, J. & Gore, J. Energy of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Bradford, M. A. et al. Quantifying microbial management of soil natural matter dynamics at macrosystem scales. Biogeochemistry 156, 19–40 (2021).

    Article 

    Google Scholar
     

  • Ward, B. A., Dutkiewicz, S., Moore, C. M. & Follows, M. J. Iron, phosphorus, and nitrogen provide ratios outline the biogeography of nitrogen fixation. Limnol. Oceanogr. 58, 2059–2075 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Zwart, J. A., Solomon, C. T. & Jones, S. E. Phytoplankton traits predict ecosystem perform in a worldwide set of lakes. Ecology 96, 2257–2264 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Nemergut, D. R., Shade, A. & Violle, C. When, the place and the way does microbial group composition matter. Entrance. Microbiol. 5, 497 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Severin, I., Östman, Ö. & Lindström, E. S. Variable results of dispersal on productiveness of bacterial communities because of adjustments in practical trait composition. PLoS ONE 8, e80825 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Staley, C. et al. Core practical traits of bacterial communities within the Higher Mississippi River present restricted variation in response to land cowl. Entrance. Microbiol. 5, 414 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Worden, L. Conservation of group practical construction throughout adjustments in composition in consumer-resource fashions. J. Theor. Biol. 493, 110239 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Tune, H.-S. et al. Regulation-structured dynamic metabolic mannequin offers a possible mechanism for delayed enzyme response in denitrification course of. Entrance. Microbiol. 8, 1866 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hemelrijk, C. Okay. & Hildenbrandt, H. Faculties of fish and flocks of birds: their form and inside construction by self-organization. Interface Focus 2, 726–737 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hellweger, F. L., Clegg, R. J., Clark, J. R., Plugge, C. M. & Kreft, J.-U. Advancing microbial sciences by individual-based modelling. Nat. Rev. Microbiol. 14, 461–471 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Griesemer, M. & Sindi, S. S. Guidelines of engagement: a information to growing agent-based fashions. Strategies Mol. Biol. 2349, 367–380 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Jayathilake, P. G. et al. A mechanistic individual-based mannequin of microbial communities. PLoS ONE 12, e0181965 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Clark, J. R., Daines, S. J., Lenton, T. M., Watson, A. J. & Williams, H. T. P. Particular person-based modelling of adaptation in marine microbial populations utilizing genetically outlined physiological parameters. Ecol. Modell. 222, 3823–3837 (2011).

    Article 

    Google Scholar
     

  • Nadell, C. D. et al. Chopping by means of the complexity of cell collectives. Proc. Biol. Sci. 280, 20122770 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen, B., Gore, J. & Nowak, M. A. Spatial dilemmas of diffusible public items. eLife 2, e01169 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abs, E., Leman, H. & Ferrière, R. A multi-scale eco-evolutionary mannequin of cooperation reveals how microbial adaptation influences soil decomposition. Commun. Biol. 3, 520 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kreft, J.-U. et al. Mighty small: observing and modeling particular person microbes turns into large science. Proc. Natl Acad. Sci. USA 110, 18027–18028 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parise, F., Lygeros, J. & Ruess, J. Bayesian inference for stochastic individual-based fashions of ecological programs: a pest management simulation research. Entrance. Environ. Sci. 3, https://doi.org/10.3389/fenvs.2015.00042 (2015).

  • Allison, S. D. & Goulden, M. L. Penalties of drought tolerance traits for microbial decomposition within the DEMENT mannequin. Soil Biol. Biochem. 107, 104–113 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Allison, S. D. A trait-based method for modelling microbial litter decomposition. Ecol. Lett. 15, 1058–1070 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Doloman, A., Varghese, H., Miller, C. D. & Flann, N. S. Modeling de novo granulation of anaerobic sludge. BMC Syst. Biol. 11, 69 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gogulancea, V. et al. Particular person primarily based mannequin hyperlinks thermodynamics, chemical speciation and environmental circumstances to microbial progress. Entrance. Microbiol. 10, 1871 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gutierrez, M. & Rodriguez-Paton, A. Simulating multicell populations with an accelerated gro simulator. In Proc. ECAL 2017, Fourteenth European Conf. on Synthetic Life, 186–188 (2017).

  • Gutiérrez, M. et al. A brand new improved and prolonged model of the multicell bacterial simulator gro. ACS Synth. Biol. 6, 1496–1508 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Momeni, B., Waite, A. J. & Shou, W. Spatial self-organization favors heterotypic cooperation over dishonest. eLife 2, e00960 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kreft, J.-U., Sales space, G. & Wimpenny, J. W. T. BacSim, a simulator for individual-based modelling of bacterial colony progress. Microbiology 144, 3275–3287 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Picioreanu, C., Van Loosdrecht, M. C. & Heijnen, J. J. Impact of diffusive and convective substrate transport on biofilm construction formation: a two-dimensional modeling research. Biotechnol. Bioeng. 69, 504–515 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lardon, L. A. et al. iDynoMiCS: next-generation individual-based modelling of biofilms. Environ. Microbiol. 13, 2416–2434 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chacón, J. M., Möbius, W. & Harcombe, W. R. The spatial and metabolic foundation of colony measurement variation. ISME J. 12, 669–680 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Oyebamiji, O. Okay. et al. Gaussian course of emulation of an individual-based mannequin simulation of microbial communities. J. Comput. Sci. 22, 69–84 (2017).

    Article 

    Google Scholar
     

  • Menon, R. & Korolev, Okay. S. Public good diffusion limits microbial mutualism. Phys. Rev. Lett. 114, 168102 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Dobay, A., Bagheri, H. C., Messina, A., Kümmerli, R. & Rankin, D. J. Interplay results of cell diffusion, cell density and public items properties on the evolution of cooperation in digital microbes. J. Evol. Biol. 27, 1869–1877 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Canzian, L., Zhao, Okay., Wong, G. C. L. & van der Schaar, M. A dynamic community formation mannequin for understanding bacterial self-organization into micro-colonies. IEEE Trans. Mol. Biol. Multiscale Commun. 1, 76–89 (2015).

    Article 

    Google Scholar
     

  • Nadell, C. D., Foster, Okay. R. & Xavier, J. B. Emergence of spatial construction in cell teams and the evolution of cooperation. PLoS Comput. Biol. 6, e1000716 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mendoza, S. N., Olivier, B. G., Molenaar, D. & Teusink, B. A scientific evaluation of present genome-scale metabolic reconstruction instruments. Genome Biol. 20, 158 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Orth, J. D., Thiele, I. & Palsson, B. Ø. What’s flux steadiness evaluation? Nat. Biotechnol. 28, 245–248 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Feist, A. M. & Palsson, B. O. The biomass goal perform. Curr. Opin. Microbiol. 13, 344–349 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Blasche, S. et al. Metabolic cooperation and spatiotemporal area of interest partitioning in a kefir microbial group. Nat. Microbiol. 6, 196–208 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dukovski, I. et al. A metabolic modeling platform for the computation of microbial ecosystems in time and house (COMETS). Nat. Protoc. 16, 5030–5082 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Varahan, S., Sinha, V., Walvekar, A., Krishna, S. & Laxman, S. Useful resource plasticity-driven carbon-nitrogen budgeting allows specialization and division of labor in a clonal group. eLife 9, e57609 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Angeles-Martinez, L. & Hatzimanikatis, V. Spatio-temporal modeling of the crowding circumstances and metabolic variability in microbial communities. PLoS Comput. Biol. 17, e1009140 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zimmermann, J., Kaleta, C. & Waschina, S. gapseq: knowledgeable prediction of bacterial metabolic pathways and reconstruction of correct metabolic fashions. Genome Biol. 22, 81 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zorrilla, F., Buric, F., Patil, Okay. R. & Zelezniak, A. metaGEM: reconstruction of genome scale metabolic fashions immediately from metagenomes. Nucleic Acids Res. 49, e126 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ponomarova, O. et al. Yeast creates a distinct segment for symbiotic lactic acid micro organism by means of nitrogen overflow. Cell Syst. 5, 345–357.e6 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Foster, Okay. R. & Bell, T. Competitors, not cooperation, dominates interactions amongst culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Borer, B., Ataman, M., Hatzimanikatis, V. & Or, D. Modeling metabolic networks of particular person bacterial brokers in heterogeneous and dynamic soil habitats (IndiMeSH). PLoS Comput. Biol. 15, e1007127 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Labhsetwar, P., Cole, J. A., Roberts, E., Value, N. D. & Luthey-Schulten, Z. A. Heterogeneity in protein expression induces metabolic variability in a modeled Escherichia coli inhabitants. Proc. Natl Acad. Sci. USA 110, 14006–14011 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kehe, J. et al. Optimistic interactions are widespread amongst culturable micro organism. Sci. Adv. 7, eabi7159 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zmora, N. et al. Personalised intestine mucosal colonization resistance to empiric probiotics is related to distinctive host and microbiome options. Cell 174, 1388–1405.e21 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Korem, T. et al. Progress dynamics of intestine microbiota in well being and illness inferred from single metagenomic samples. Science 349, 1101–1106 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hamilton, J. J. et al. Metabolic community evaluation and metatranscriptomics reveal auxotrophies and nutrient sources of the cosmopolitan freshwater microbial lineage acI. mSystems 2, e00091-17 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guerra, C. A. et al. Monitoring, focusing on, and conserving soil biodiversity. Science 371, 239–241 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • IPCC. Local weather Change and Land: an IPCC Particular Report on Local weather Change, Desertification, Land Degradation, Sustainable Land Administration, Meals Safety, and Greenhouse Gasoline Fluxes in Terrestrial Ecosystems (IPCC, 2020).

  • Pacciani-Mori, L., Giometto, A., Suweis, S. & Maritan, A. Dynamic metabolic adaptation can promote species coexistence in aggressive microbial communities. PLoS Comput. Biol. 16, e1007896 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments