Sonntag, Juli 31, 2022
StartMicrobiologyEcology and evolution of chlamydial symbionts of arthropods

Ecology and evolution of chlamydial symbionts of arthropods


  • Everett KD, Bush RM, Andersen AA. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., every containing one monotypic genus, revised taxonomy of the household Chlamydiaceae, together with a brand new genus and 5 new species, and requirements for the identification of organisms. Int J Syst Bacteriol. 1999;49:415–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Horn M. Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol. 2008;62:113–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Taylor-Brown A, Vaughan L, Greub G, Timms P, Polkinghorne A. Twenty years of analysis into Chlamydia-like organisms: a revolution in our understanding of the biology and pathogenicity of members of the phylum Chlamydiae. Pathog Dis. 2015;73:1–15.

    CAS 
    PubMed 

    Google Scholar
     

  • Bayramova F, Jacquier N, Greub G. Perception within the biology of Chlamydia-related micro organism. Microbes Infect. 2018;20:432–40.

    PubMed 

    Google Scholar
     

  • Borel N, Polkinghorne A, Pospischil A. A assessment on chlamydial ailments in animals: nonetheless a problem for pathologists? Vet Pathol. 2018;55:374–90.

    PubMed 

    Google Scholar
     

  • Collingro A, Köstlbacher S, Horn M. Chlamydiae within the surroundings. Developments Microbiol. 2020;28:877–88.

    CAS 
    PubMed 

    Google Scholar
     

  • Corsaro D, Greub G. Pathogenic potential of novel Chlamydiae and diagnostic approaches to infections as a consequence of these obligate intracellular micro organism. Clin Microbiol Rev. 2006;19:283–97.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greub G, Boyadjiev I, La Scola B, Raoult D, Martin C. Serological trace suggesting that Parachlamydiaceae are brokers of pneumonia in polytraumatized intensive care sufferers. Ann NY Acad Sci. 2003;990:311–9.

    PubMed 

    Google Scholar
     

  • Lamoth F, Aeby S, Schneider A, Jaton-Ogay Ok, Vaudaux B, Greub G. Parachlamydia and rhabdochlamydia in untimely neonates. Emerg Infect Dis. 2009;15:2072–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lagkouvardos I, Weinmaier T, Lauro FM, Cavicchioli R, Rattei T, Horn M. Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological variety of the Chlamydiae. ISME J. 2014;8:115–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Greub G, Raoult D. Historical past of the ADP/ATP-translocase-encoding gene, a parasitism gene transferred from a Chlamydiales ancestor to vegetation 1 billion years in the past. Appl Environ Microbiol. 2003;69:5530–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horn M, Collingro A, Schmitz-Esser S, Beier CL, Purkhold U, Fartmann B, et al. Illuminating the evolutionary historical past of chlamydiae. Science. 2004;304:728–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Kamneva OK, Liberles DA, Ward NL. Genome-wide affect of indel Substitutions on evolution of micro organism of the PVC superphylum, revealed utilizing a novel computational methodology. Genome Biol Evol. 2010;2:870–86.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdelrahman YM, Belland RJ. The chlamydial developmental cycle. FEMS Microbiol Rev. 2005;29:949–59.

    CAS 
    PubMed 

    Google Scholar
     

  • Bachmann NL, Polkinghorne A, Timms P. Chlamydia genomics: offering novel insights into chlamydial biology. Developments Microbiol. 2014;22:464–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Bastidas RJ, Valdivia RH. Emancipating chlamydia: advances within the genetic manipulation of a recalcitrant intracellular pathogen. Microbiol Mol Biol Rev. 2016;80:411–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sixt BS, Valdivia RH. Molecular genetic evaluation of chlamydia species. Annu Rev Microbiol. 2016;70:179–98.

    CAS 
    PubMed 

    Google Scholar
     

  • Collingro A, Tischler P, Weinmaier T, Penz T, Heinz E, Brunham RC, et al. Unity in selection–the pan-genome of the Chlamydiae. Mol Biol Evol. 2011;28:3253–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor-Brown A, Madden D, Polkinghorne A. Tradition-independent approaches to chlamydial genomics. Microb Genom. 2018;4. https://doi.org/10.1099/mgen.0.000145.

  • Omsland A, Sixt BS, Horn M, Hackstadt T. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic actions. FEMS Microbiol Rev. 2014;38:779–801.

    CAS 
    PubMed 

    Google Scholar
     

  • Domman D, Collingro A, Lagkouvardos I, Gehre L, Weinmaier T, Rattei T, et al. Large growth of Ubiquitination-related gene households throughout the Chlamydiae. Mol Biol Evol. 2014;31:2890–904.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collingro A, Köstlbacher S, Mussmann M, Stepanauskas R, Hallam SJ, Horn M. Sudden genomic options in widespread intracellular micro organism: proof for motility of marine chlamydiae. ISME J. 2017;11:2334–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dharamshi JE, Tamarit D, Eme L, Stairs CW, Martijn J, Homa F, et al. Marine sediments illuminate chlamydiae variety and evolution. Curr Biol. 2020;30:1032–48.e7.

    CAS 
    PubMed 

    Google Scholar
     

  • Köstlbacher S, Collingro A, Halter T, Schulz F, Jungbluth SP, Horn M. Pangenomics reveals various environmental existence amongst chlamydiae. Nat Commun. 2021;12:4021.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kostanjšek R, Štrus J, Drobne D, Avguštin G. ‘Candidatus Rhabdochlamydia porcellionis’, an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). Int J Syst Evol Microbiol. 2004;54:543–9.

    PubMed 

    Google Scholar
     

  • Corsaro D, Thomas V, Goy G, Venditti D, Radek R, Greub G. ‘Candidatus Rhabdochlamydia crassificans’, an intracellular bacterial pathogen of the cockroach Blatta orientalis (Insecta: Blattodea). Syst Appl Microbiol. 2007;30:221–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Vanthournout B, Hendrickx F. Endosymbiont dominated bacterial communities in a dwarf spider. PLoS ONE. 2015;10:e0117297.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pillonel T, Bertelli C, Aeby S, de Barsy M, Jacquier N, Kebbi-Beghdadi C, et al. Sequencing the obligate intracellular rhabdochlamydia helvetica inside its tick host ixodes ricinus to analyze their symbiotic relationship. Genome Biol Evol. 2019;11:1334–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radek R. Mild and electron microscopic research of a Rickettsiella species from the cockroach Blatta orientalis. J Invertebr Pathol. 2000;76:249–56.

    CAS 
    PubMed 

    Google Scholar
     

  • Kostanjšek R, Pirc Marolt T. Pathogenesis, tissue distribution and host response to Rhabdochlamydia porcellionis an infection in tough woodlouse Porcellio scaber. J Invertebr Pathol. 2015;125:56–67.

    PubMed 

    Google Scholar
     

  • Pilloux L, Aeby S, Gaümann R, Burri C, Beuret C, Greub G. The excessive prevalence and variety of Chlamydiales DNA inside Ixodes ricinus ticks counsel a task for ticks as reservoirs and vectors of Chlamydia-related micro organism. Appl Environ Microbiol. 2015;81:8177–82.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M, Haller D, et al. IMNGS: a complete open useful resource of processed 16S rRNA microbial profiles for ecology and variety research. Sci Rep. 2016;6:33721.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreisinger J, Kropáčková L, Petrželková A, Adámková M, Tomášek O, Martin J-F, et al. Temporal stability and the impact of transgenerational switch on fecal microbiota construction in an extended distance migratory chicken. Entrance Microbiol. 2017;8:50.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology analysis. FEMS Microbiol Rev. 2018;42:293–323.

    CAS 
    PubMed 

    Google Scholar
     

  • Singer D, Seppey CVW, Lentendu G, Dunthorn M, Bass D, Belbahri L, et al. Protist taxonomic and purposeful variety in soil, freshwater and marine ecosystems. Environ Int. 2021;146:106262.

    CAS 
    PubMed 

    Google Scholar
     

  • Elwell C, Mirrashidi Ok, Engel J. Chlamydia cell biology and pathogenesis. Nat Rev Microbiol. 2016;14:385–400.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huerta-Cepas J, Szklarczyk D, Forslund Ok, Prepare dinner H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved purposeful annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Miele V, Penel S, Duret L. Extremely-fast sequence clustering from similarity networks with SiLiX. BMC Bioinformatics. 2011;12:116.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCutcheon JP, Moran NA. Excessive genome discount in symbiotic micro organism. Nat Rev Microbiol. 2011;10:13–26.

    PubMed 

    Google Scholar
     

  • Bohlin J, Sekse C, Skjerve E, Brynildsrud O. Constructive correlations between genomic %AT and genome measurement inside strains of bacterial species. Environ Microbiol Rep. 2014;6:278–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Foerstner KU, von Mering C, Hooper SD, Bork P. Environments form the nucleotide composition of genomes. EMBO Rep. 2005;6:1208–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agashe D, Shankar N. The evolution of bacterial DNA base composition. J Exp Zool B Mol Dev Evol. 2014;322:517–28.

    CAS 
    PubMed 

    Google Scholar
     

  • Brockhurst MA, Harrison E, Corridor JPJ, Richards T, McNally A, MacLean C. The ecology and evolution of pangenomes. Curr Biol. 2019;29:R1094–103.

    CAS 
    PubMed 

    Google Scholar
     

  • Peters J, Wilson DP, Myers G, Timms P, Bavoil PM. Kind III secretion à la Chlamydia. Developments Microbiol. 2007;15:241–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Schmitz-Esser S, Linka N, Collingro A, Beier CL, Neuhaus HE, Wagner M, et al. ATP/ADP translocases: a typical function of obligate intracellular amoebal symbionts associated to Chlamydiae and Rickettsiae. J Bacteriol. 2004;186:683–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosario CJ, Tan M. The early gene product EUO is a transcriptional repressor that selectively regulates promoters of Chlamydia late genes. Mol Microbiol. 2012;84:1097–107.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verma A, Maurelli AT. Identification of two eukaryote-like serine/threonine kinases encoded by Chlamydia trachomatis serovar L2 and characterization of interacting companions of Pkn1. Infect Immun. 2003;71:5772–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Archuleta TL, Du Y, English CA, Lory S, Lesser C, Ohi MD, et al. The Chlamydia effector chlamydial outer protein N (CopN) sequesters tubulin and prevents microtubule meeting. J Biol Chem. 2011;286:33992–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colpaert M, Kadouche D, Ducatez M, Pillonel T, Kebbi-Beghdadi C, Cenci U, et al. Conservation of the glycogen metabolism pathway underlines a pivotal operate of storage polysaccharides in Chlamydiae. Commun Biol. 2021;4:296.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azarian T, Huang I-T, Hanage WP. Construction and dynamics of bacterial populations: pangenome ecology. In: Tettelin H, Medini D (eds). The Pangenome: Range, Dynamics and Evolution of Genomes. 2020. Springer, Cham (CH).

  • Drobne D, Strus J, Znidarsic N, Zidar P. Morphological description of bacterial an infection of digestive glands within the terrestrial isopod porcellio scaber (Isopoda, crustacea). J Invertebr Pathol. 1999;73:113–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Konstantinidis KT, Tiedje JM. In direction of a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6258–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Martino ML, Campilongo R, Casalino M, Micheli G, Colonna B, Prosseda G. Polyamines: rising gamers in bacteria-host interactions. Int J Med Microbiol. 2013;303:484–91.

    PubMed 

    Google Scholar
     

  • Michael AJ. Polyamines in eukaryotes, micro organism, and archaea. J Biol Chem. 2016;291:14896–903.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerra PR, Herrero-Fresno A, Pors SE, Ahmed S, Wang D, Thøfner I, et al. The membrane transporter PotE is required for virulence in avian pathogenic Escherichia coli (APEC). Vet Microbiol. 2018;216:38–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Rodríguez-Beltrán J, DelaFuente J, León-Sampedro R, MacLean RC, San Millán Á. Past horizontal gene switch: the position of plasmids in bacterial evolution. Nat Rev Microbiol. 2021;19:347–59.

  • Köstlbacher S, Collingro A, Halter T, Domman D, Horn M. Coevolving plasmids drive gene circulation and genome plasticity in host-associated intracellular micro organism. Curr Biol. 2021;31:346–57.e3.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szabo KV, O’Neill CE, Clarke IN. Range in Chlamydial plasmids. PLoS ONE. 2020;15:e0233298.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong G. Chlamydial plasmid-dependent pathogenicity. Developments Microbiol. 2017;25:141–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Gitsels A, Van Lent S, Sanders N, Vanrompay D. Chlamydia: what’s on the surface does matter. Crit Rev Microbiol. 2020;46:100–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Bertelli C, Collyn F, Croxatto A, Rückert C, Polkinghorne A, Kebbi-Beghdadi C, et al. The Waddlia genome: a window into chlamydial biology. PLoS ONE. 2010;5:e10890.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aistleitner Ok, Anrather D, Schott T, Klose J, Vibrant M, Ammerer G, et al. Conserved options and main variations within the outer membrane protein composition of chlamydiae. Environ Microbiol. 2015;17:1397–413.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Brune A, Zimmer M. Bacterial symbionts within the hepatopancreas of isopods: variety and environmental transmission. FEMS Microbiol Ecol. 2007;61:141–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Siguier P, Filée J, Chandler M. Insertion sequences in prokaryotic genomes. Curr Opin Microbiol. 2006;9:526–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Plague GR, Dunbar HE, Tran PL, Moran NA. In depth proliferation of transposable parts in heritable bacterial symbionts. J Bacteriol. 2008;190:777–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Burke GR, Moran NA. Large genomic decay in Serratia symbiotica, a lately developed symbiont of aphids. Genome Biol Evol. 2011;3:195–208.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitz-Esser S, Penz T, Spang A, Horn M. A bacterial genome in transition–an distinctive enrichment of IS parts however lack of proof for current transposition within the symbiont Amoebophilus asiaticus. BMC Evol Biol. 2011;11:270.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausern AC, Hamil C, et al. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol. 2014;6:76–93.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manzano-Marín A, Latorre A. Snapshots of a shrinking companion: genome discount in Serratia symbiotica. Sci Rep. 2016;6:32590.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hendry TA, Freed LL, Fader D, Fenolio D, Sutton TT, Lopez JV. Ongoing transposon-mediated genome discount within the luminous bacterial symbionts of deep-sea ceratioid anglerfishes. MBio. 2018;9:e01033–18.

  • McCutcheon JP, Boyd BM, Dale C. The lifetime of an insect endosymbiont from the cradle to the grave. Curr Biol. 2019;29:R485–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Moran NA, Plague GR. Genomic modifications following host restriction in micro organism. Curr Opin Genet Dev. 2004;14:627–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Bergman CM, Quesneville H. Discovering and detecting transposable parts in genome sequences. Transient Bioinform. 2007;8:382–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Syberg-Olsen M, Garber A, Keeling P, McCutcheon J, Husnik F. Pseudofinder: detection of pseudogenes in prokaryotic genomes. bioRxiv. 2021. https://doi.org/10.1101/2021.10.07.463580.

  • Rocha EP, Danchin A, Viari A. Common replication biases in micro organism. Mol Microbiol. 1999;32:11–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Moliner C, Fournier P-E, Raoult D. Genome evaluation of microorganisms dwelling in amoebae reveals a melting pot of evolution. FEMS Microbiol Rev. 2010;34:281–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Bertelli C, Greub G. Lateral gene exchanges form the genomes of amoeba-resisting microorganisms. Entrance Cell Infect Microbiol. 2012;2:110.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haselkorn TS, Jimenez D, Bashir U, Sallinger E, Queller DC, Strassmann JE, et al. Novel Chlamydiae and Amoebophilus endosymbionts are prevalent in wild isolates of the mannequin social amoeba Dictyostelium discoideum. Environ Microbiol Rep. 2021;13:708–19.

  • Hernández-Jarguín A, Díaz-Sánchez S, Villar M, de la Fuente J. Built-in metatranscriptomics and metaproteomics for the characterization of bacterial microbiota in unfed Ixodes ricinus. Ticks Tick Borne Dis. 2018;9:1241–51.

    PubMed 

    Google Scholar
     

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database challenge: improved knowledge processing and web-based instruments. Nucleic Acids Res. 2013;41:D590–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O’Neill Ok, et al. RefSeq: an replace on prokaryotic genome annotation and curation. Nucleic Acids Res. 2018;46:D851–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Sayers EW, Cavanaugh M, Clark Ok, Ostell J, Pruitt KD, Karsch-Mizrachi I. GenBank. Nucleic Acids Res. 2020;48:D84–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Schulz F, Eloe-Fadrosh EA, Bowers RM, Jarett J, Nielsen T, Ivanova NN, et al. In direction of a balanced view of the bacterial tree of life. Microbiome. 2017;5:140.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar RC. Search and clustering orders of magnitude quicker than BLAST. Bioinformatics. 2010;26:2460–1.

    CAS 
    PubMed 

    Google Scholar
     

  • Pruesse E, Peplies J, Glöckner FO. SINA: correct high-throughput a number of sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a device for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costume AWM, Flamm C, Fritzsch G, Grünewald S, Kruspe M, Prohaska SJ, et al. Noisy: identification of problematic columns in a number of sequence alignments. Algorithms Mol Biol. 2008;3:7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: current updates and new developments. Nucleic Acids Res. 2019;47:W256–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schloss PD, Westcott SL, Ryabin T, Corridor JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, Group-Supported Software program for describing and evaluating microbial communities. Appl Environ Microbiol. 2009;75:7537–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh Ok, Misawa Ok, Kuma Ok-I, Miyata T. MAFFT: a novel methodology for speedy a number of sequence alignment primarily based on quick Fourier rework. Nucleic Acids Res. 2002;30:3059–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbera P, Kozlov AM, Czech L, Morel B, Darriba D, Flouri T, et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst Biol. 2019;68:365–9.

    PubMed 

    Google Scholar
     

  • Sixt BS, Kostanjšek R, Mustedanagic A, Toenshoff ER, Horn M. Developmental cycle and host interplay of Rhabdochlamydia porcellionis, an intracellular parasite of terrestrial isopods. Environ Microbiol. 2013;15:2980–93.

    PubMed 

    Google Scholar
     

  • Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from brief and lengthy sequencing reads. PLoS Comput Biol. 2017;13:e1005595.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31:3350–2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the standard of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hendrickx F, De Corte Z, Sonet G, Van Belleghem SM, Köstlbacher S, Vangestel CA. masculinizing supergene underlies an exaggerated male reproductive morph in a spider. Nat Ecol Evol. 2021;6:195–206.

    PubMed 

    Google Scholar
     

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a brand new genome meeting algorithm and its functions to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karst SM, Kirkegaard RH, Albertsen M. mmgenome: a toolbox for reproducible genome extraction from metagenomes. bioRxiv.

  • Wooden DE, Lu J, Langmead B. Improved metagenomic evaluation with Kraken 2. Genome Biol. 2019;20:1–13.


    Google Scholar
     

  • Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, et al. A genomic catalog of Earth’s microbiomes. Nat Biotechnol. 2021;39:499–509.

    CAS 
    PubMed 

    Google Scholar
     

  • Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: high quality evaluation device for genome assemblies. Bioinformatics. 2013;29:1072–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seemann T. Prokka: speedy prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA household database. Nucleic Acids Res. 2003;31:439–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold quicker RNA homology searches. Bioinformatics. 2013;29:2933–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan PP, Lowe TM. tRNAscan-SE: trying to find tRNA genes in genomic sequences. Strategies Mol Biol. 2019;1962:1–14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Worning P, Jensen LJ, Hallin PF, Stærfeldt H-H, Ussery DW. Origin of replication in round prokaryotic chromosomes. Environ Microbiol. 2006;8:353–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Okonechnikov Ok, Golosova O, Fursov M. UGENE workforce. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Huerta-Cepas J, Forslund Ok, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Quick genome-wide purposeful annotation via orthology project by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer Ok, et al. BLAST+: structure and functions. BMC Bioinformatics. 2009;10:1–9.


    Google Scholar
     

  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M, Sato Y, Morishima Ok. BlastKOALA and GhostKOALA: KEGG instruments for purposeful characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an info aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Man L, Roat Kultima J, Andersson SGE. genoPlotR: comparative gene and genome visualization in R. Bioinformatics. 2010;26:2334–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • R Core Group. R: A Language and Setting for Statistical Computing. 2020. R Basis for Statistical Computing, Vienna, Austria.

  • Wickham H. ggplot2: Elegant Graphics for Information Evaluation. 2016. Springer-Verlag New York.

  • Oksanen J, Blanchet FG, Pleasant M, Kindt R, Legendre P, McGlinn D, et al. vegan: Group Ecology Bundle. 2020. R package deal (model 2.5-7). https://CRAN.R-project.org/package deal=vegan.

  • RELATED ARTICLES

    Most Popular

    Recent Comments