Graphical Summary. Each HIV-1 and cART alter the lysosomes, rising intracellular iron and the chance of ferroptosis. Dysfunctional lysosomes launch the ferroptosis drivers iron, Ca2+ and cathepsin B (catB), selling neuronal and oligodendrocyte loss, mirrored within the white and grey matter pathology. The host responds to lysosomal injury by activating an epigenetic axis comprised of bromodomain 4 (BRD4) and microRNA-29 household (miR-29) that promptly suppresses lysosomal perform, reducing ferritinophagy. As there’s an inverse relationship between miR-29 and BRD4, HIV-1 inhibition of miR-29, upregulates BRD4, blocking ferritinophagy. The BRD4/miR-29 system additionally inhibits iron regulatory protein-2 (IRP-2) and augments cystine/glutamate antiporter xCT (SLC7A11), reducing the percentages of ferroptosis.
Contents
- 1 Introduction
- 2 Ferroptosis and the Endosomal-Lysosomal System
- 3 The BRD4/MiR-29 Compensatory System
- 4 Potential Interventions
- 5 V-Atpase Inhibitors
- 6 N-Acetylcysteine
- 7 Aryl-Thiazole Compounds
- 8 Pyridine, Acetamide, and Benzohydrazine
- 9 Ferrostatin-1 and Liproxstatin-1
- 10 Iron Chelators
- 11 Chloroquine and Hydroxychloroquine
- 12 Psychotropic Medication
- 13 Cathepsin B Inhibitors
- 14 Conclusion
- 15 Writer Contributions
- 16 Battle of Curiosity
- 17 Writer’s Notice
- 18 References
Introduction
HIV-associated neurocognitive dysfunction (HAND), encountered in as much as 50% of HIV sufferers, is characterised by cognitive deficits which will happen regardless of ample remedy with mixture antiretroviral remedy (cART) (Ru and Tang, 2017). Though the severity of HAND is lowered by cART, folks residing with HIV (PLWH), proceed to show excessive charges of cognitive impairment and infrequently develop Alzheimer’s illness (AD) earlier in life in comparison with the overall inhabitants (Calcagno et al., 2021; Sharma, 2021). As excessive intracellular iron worsens HIV-1 prognosis and iron proteins are upregulated in HAND, ferroptosis-induced neurodegeneration (FIN) might contribute to this dysfunction (Patton et al., 2017; Milanini et al., 2019).
Viruses require iron for replication and infrequently receive this nutrient by concentrating on the iron-rich organelles, mitochondria, and lysosomes, disrupting their perform, together with ferritinophagy and myelination (Chang et al., 2015).
Ferroptosis is a programmed cell demise triggered by iron-mediated lipid peroxidation within the absence of antioxidants glutathione (GSH) or glutathione peroxidase 4 (GPX4). Underneath regular circumstances, iron is saved in ferritin, a protein that undergoes lysosomal autophagy to launch this biometal as wanted. Dysfunctional ferritinophagy triggers poisonous oxidative stress by upregulating intracellular iron, selling pathology, together with neurodegeneration. Except for iron, ferroptosis may be triggered by low uptake of cysteine or glutamine by way of SLC7A11, an amino acid transporter particular for cysteine and glutamate, in addition to the lack of GPX4 (Tang et al., 2021). Viral infections related to elevated iron absorption or upregulation of intracellular iron are prone to lead to ferroptosis. Ferroptotic cell demise is characterised by the discharge of damage-associated molecular patterns (DAMPs) that set off immunogenicity and neuroinflammation, hallmarks of each HAND and AD (Smail and Brew, 2018; Solar et al., 2018). Lysosomes, the grasp regulators of iron metabolism, management ferroptosis by way of ferritin autophagy (ferritinophagy), a course of characterised by iron launch (Rizzollo et al., 2021). Many viruses hijack the endosomal-lysosomal system (ELS) to amass iron, precipitating ferroptosis and FIN (Gao et al., 2017).
Latest research have discovered that each cART and the HIV-1 antigen, trans-activator of transcription (Tat), alter the host ELS, upregulating ferritinophagy and iron launch (Fredericksen et al., 2002; Hui et al., 2012; Tripathi et al., 2019; Cao et al., 2021) (Graphical Summary). As well as, virus or cART-induced lysosomal dysfunction can activate microglial cells that usually remove wholesome neurons and synapses, additional contributing to neurodegeneration (Tripathi et al., 2019; Kapralov et al., 2020; Cao et al., 2021; Miyanishi et al., 2021). Microglia are extremely prone to ferroptosis and harbor latent HIV-1, subsequently ferroptotic disintegration of those cells launch DAMPs, triggering neuroinflammation (Lisi et al., 2016; Chivero et al., 2017; Shankaran et al., 2017; Pockets et al., 2019; Borrajo et al., 2021). Certainly, iron-activated microglia and macrophages, documented in HIV-1 an infection, are believed to drive HAND pathology (Boelaert et al., 1996; Kenkhuis et al., 2021). As well as, microglia launch cathepsin B (CatB), a protein related to untimely mind getting old, neurotoxicity, and the buildup of pathological, hyperphosphorylated Tau (pTau) (von Bernhardi et al., 2015; Nakanishi, 2020). Curiously, as CatB possesses endopeptidase exercise, the SARS-CoV-2 virus hijacks this protein to activate the S (spike) antigen, rising infectivity (Schornberg et al., 2006; Mitrović et al., 2016; Huang et al., 2020; Padmanabhan et al., 2020). Furthermore, people with HIV-1 an infection on long-term cART current with increased mind deposition of pTau, linking this virus and its remedy to the chance of creating tauopathies (Anthony et al., 2006; Brown et al., 2014; Rao and Adlard, 2018; Mangan, 2021). These findings point out that HIV-1 and CART induce lysosomal injury and predispose to FIN as elevated intracellular iron will increase the percentages of lipid peroxidation and ferroptotic cell demise (Jiang et al., 2021).
Lysosomes are iron-rich subcellular organelles specialised within the degradation of proteins derived from autophagy, endocytosis, and phagocytosis (Platt et al., 2012; Determine 1). Except for recycling endogenous biomolecule, autophagy additionally eliminates malignant and virus-infected cells, actively collaborating in host immunity (Choi et al., 2018). Many viruses, together with SARS-CoV-2 and HIV Tat protein exploit the ELS to enter and exit host cells, disrupting this pathway and predisposing to FIN (Fan and He, 2016; Khan et al., 2020; Chen D. et al., 2021). Certainly, viruses that exploit the lysosome alter native pH and membrane permeability, facilitating the discharge of ferroptosis drivers iron, calcium (Ca2+) and CatB (Hui et al., 2012; Gorshkov et al., 2021; Nagakannan et al., 2021; Pedrera et al., 2021). For instance, latest research linked cytosolic Ca2+ upregulation to each ferroptosis and excitotoxicity, connecting the 2 metals to cell demise (Gleitze et al., 2021; Pedrera et al., 2021). As well as, HIV has been reported to generate huge reactive oxygen and nitrogen species (RONS) related to HAND, possible by aberrant microglial activation (Borrajo et al., 2021).
Determine 1. SARS-CoV-2 virus and HIV Tat antigen ingress host cells by way of ELS. The SARS-CoV-2 envelope (E) protein is a direct inhibitor of BRD4, rising the chance of ferroptosis. Viruses that exploit ELS to egress host cells might disrupt lysosomal exocytosis of myelin and Tau protein (not proven). Late endosomes generate extracellular vesicles (EVs) that may unfold viral proteins to the neighboring cells. Dysfunctional lysosomes might “leak” ferroptosis-driving molecules, together with iron, Ca2+ and CatB, contributing to ferroptosis-induced neurodegeneration (FIN).
Latest research have reported that lysosomal exocytosis is required for oligodendrocytes (OLGc) and Schwan cells myelination, suggesting that dysfunctional ELS might result in white matter injury in HAND and AD (Shen et al., 2016). Others have related dysfunctional ELS with the dissemination and seeding of pTau, additional implicating this method in tauopathies (Tanaka et al., 2019; Jiang and Bhaskar, 2020; Polanco et al., 2021; Sebastián-Serrano et al., 2022).
On this mini evaluate, we take a more in-depth take a look at the virus induced ELS dysfunction within the pathogenesis of HAND and neurodegenerative problems. As well as, we suggest that FIN, triggered by HIV-1 an infection and long-term cART use, could also be counteracted by an epigenetic system comprised of bromodomain protein 4 (BRD4) and microRNA-29 (miR 29) that inhibits ferritinophagy by a number of mechanisms, together with direct antiviral motion, lysosomal suppression, SLC7A11 activation, and iron regulatory protein-2 (IRP-2) inhibition. We additionally talk about potential interventions for lysosomal health, together with V-ATPase inhibitors, ferroptosis blockers, and CatB inhibitors.
Ferroptosis and the Endosomal-Lysosomal System
The ELS is comprised of intracellular vesicular compartments, together with early endosomes, recycling endosomes, and late endosomes [also called multivesicular bodies (MVBs)] that merge with lysosomes. Autophagosomes additionally be a part of the lysosomes to recycle their cargoes (Determine 1). Many viruses, together with HIV-1 and SARS-CoV-2, purchase iron by usurping the lysosome, a course of that upregulates ferritinophagy, iron launch and the chance of FIN (Hui et al., 2012; Chauhan and Khandkar, 2015; Hu et al., 2015; Yambire et al., 2019; Blaess et al., 2020; Determine 1).
As autophagy controls viral infections by catabolizing contaminated cells together with the virus, many viruses have developed the power to evade immunity by manipulating autophagy. For instance, HIV-1 hijacks the ELS by Tat, Nef, and ENV antigens interplay with the autophagy proteins or mammalian goal of rapamycin (mTor) elements (Nardacci et al., 2017).
Lysosomal exocytosis, a mechanism of content material secretion into the extracellular house, is mediated by lysosomal fusion with the cell plasma membrane that allows cargo launch. HIV-1 and SARS-CoV-2 hijack the ELS to enter and egress host cells, disrupting vesicular homeostasis, together with lysosomal exocytosis, and native pH (Hui et al., 2012; Nardacci et al., 2017; Blaess et al., 2020). Latest research have reported that myelin biosynthesis requires ample lysosomal exocytosis, suggesting that dysfunctional ELS might result in each grey and white matter pathology (Chen D. et al., 2021; Kreher et al., 2021). Certainly, viruses that exit host cells by means of the lysosomes might disrupt myelination, selling HAND and neurodegenerative problems (Jensen et al., 2015; Buratta et al., 2020). Alongside these strains, novel neuroimaging research have detected white matter adjustments within the prodromal part of AD [prior to the development of pTau or beta-amyloid (Aβ)], indicating that myelin pathology is extra widespread in his dysfunction than beforehand thought (Nasrabady et al., 2018; Pichet Binette et al., 2021). Furthermore, a rising physique of proof has demonstrated myelin breakdown and dysfunctional OLGc progenitor cells (OPCs) in HAND and AD, linking each situations to white matter pathology (Kimura-Kuroda et al., 1994; Bernardo et al., 1997; Lackner et al., 2010; Jensen et al., 2019). Moreover, as OLGc are the predominant iron-containing cells within the mind and extremely prone to ferroptosis, their demise might improve native iron, predisposing to FIN (Nobuta et al., 2019; Jhelum et al., 2020). Additionally, the ELS-released pTau, iron, Ca2+, CatB, and myelin keep the neurodegenerative and HAND pathology (Pleasure et al., 2010; Chen et al., 2012; Xu Y. et al., 2021).
Latest research discovered that elevated intracellular iron will increase pTau and its aggregation, linking tauopathies to dysfunctional ELS (Brown et al., 2014; Rao and Adlard, 2018). As well as, iron dyshomeostasis and extreme pTau, documented in HAND, AD, and traumatic mind harm (TBI), implicate ELS in these pathologies (Canzoniero and Snider, 2005; Ravi et al., 2016; Cantres-Rosario et al., 2019; Hook et al., 2020; Nagakannan et al., 2021; Pedrera et al., 2021). Moreover, as pTau acts as a cell-penetrating peptide, it could set off cell-cell fusion and senescence, most likely accounting for the accelerated getting old and early improvement of AD in PLWH on long run cART (Ferrell and Giunta, 2014; Veloria et al., 2017; Osorio et al., 2022). Alongside these strains, HIV contaminated macrophages had been proven to enter the mind and secrete neurotoxic CatB, triggering untimely senescence, ferroptosis and FIN (Cantres-Rosario et al., 2019). Extreme CatB was additionally related to most cancers, connecting ELS dysfunction to tumorigenesis and metastases (Gondi and Rao, 2013; Ruan et al., 2015). Alternatively, CatB inhibitors might avert HAND, TBI, and most cancers (Ha et al., 2012; Kos et al., 2014; Hook et al., 2015; Zenón-Meléndez et al., 2022). Cathepsin B was additionally related to autoimmune problems and osteoporosis, suggesting that a greater understanding of this protein and its inhibitors might enhance the remedy of a number of problems that lack particular therapies (Toomey et al., 2014; Li et al., 2017; Ansari et al., 2022). As well as, a number of antipsychotic brokers possess anticancer and antiviral properties, suggesting that these pathologies might intersect on the ELS degree (Daniel et al., 2001; Kuzu et al., 2017; Girgis and Lieberman, 2021; Lu et al., 2021) (mentioned within the part Psychotropic medication). Different novel research present that viral infections might precipitate ferroptosis by hijacking Ca2+ channels and pumps, suggesting a job for calcium channel blockers within the remedy of viral infections (Chen et al., 2019; Jayaseelan and Paramasivam, 2020; Straus et al., 2021). Certainly, as HIV Tat antigen upregulates pTau, it possible promotes FIN (Tripathi et al., 2016; Majerníková et al., 2021; Wang et al., 2022). Furthermore, HIV an infection was proven to extend apolipoprotein ε4 (ApoE4), an iron-upregulated biomolecule and AD threat issue, suggesting FIN involvement (Ayton et al., 2015; Diouf et al., 2019; Kagerer et al., 2020). Moreover, as viruses upregulate each ApoE4 and iron, they could be able to triggering FIN immediately (Corder et al., 1998; Burt et al., 2008; Kuo et al., 2020; Gkouskou et al., 2021; Yim et al., 2022).
Taken collectively, ELS is located on the crossroad of viral infections, most cancers, and neuropsychiatric sickness, most likely explaining the useful impact of lysosomal therapeutics in these pathologies.
The BRD4/MiR-29 Compensatory System
Bromodomains are chromatin-associated molecules that work together with acetylated lysine residues on histone proteins, regulating quite a few mobile processes, together with replication, genome restore and the autophagic lysosomal perform (Mujtaba et al., 2007; Fujisawa and Filippakopoulos, 2017; Sakamaki et al., 2017; Li et al., 2018). BRD4 is an epigenetic reader that regulates gene expression by forming a posh with the constructive transcription elongation issue b (P-TEFb), selling RNA polymerase II (Pol II), a mediator of DNA-dependent RNA synthesis (Jung et al., 2014). Novel research have implicated BRD4 in numerous pathologies, starting from irritation, to most cancers, CNS, and viral illnesses (Zhu et al., 2012; Korb et al., 2015; Hajmirza et al., 2018). In preclinical research, bromodomain and extra-terminal motif (BET) inhibitors (BETis) had been proven to restrict the development of a number of cancers, rendering this protein a pharmacological goal.
Just lately, nonetheless, pan-BRD4 blockers, comparable to JQ1, had been discovered detrimental as they set off ferroptosis, damaging the genome, immunity and white matter (Chiu et al., 2017; Donati et al., 2018; Mita and Mita, 2020). Alternatively, domain-specific BETis seem to have fewer adversarial results and a few have already been accredited for scientific use (Pérez-Salvia and Esteller, 2017; Petretich et al., 2020). BRD4 negatively regulates ferroptosis by activating xCT, repairing the DNA, and inducing senescence-associated secretory phenotype (SASP), a ferroptosis resistant mobile program (Tasdemir et al., 2016; Sui et al., 2019; Lam et al., 2020; Tang et al., 2022). As well as, BRD4 promotes iron sequestration in ferritin to withhold it from pathogens, possible implicating this protein in dietary immunity (Sui et al., 2019). Furthermore, BRD4 shows direct antiviral properties, together with inhibition of HIV Tat antigen, therefore viruses should neutralize this protein to thrive (Wang et al., 2020; Alamer et al., 2021; Xu X. et al., 2021; Desk 1). Certainly, a number of viruses, together with HIV and SARS-CoV-2 have developed the power to usurp BRD4, overcoming dietary immunity (Chen I. P. et al., 2021). For instance, the E (envelope) protein of SARS-CoV-2 virus inhibits BRD4, neutralizing the perform of this epigenetic reader (Gordon et al., 2020). As BRD4 represses lysosomal autophagy, together with ferritinophagy, viral hijacking of this protein might immediately induce ferroptosis (Sakamaki et al., 2017). Furthermore, BRD4 protects mitochondria by safeguarding the transcription of mitochondrial genes positioned within the nucleus (Kim et al., 2020). That is important as earlier research have implicated mitochondria and BRD4 in reminiscence formation, suggesting a direct mechanism for virus-mediated neurodegeneration (Korb et al., 2015; Khacho et al., 2017; Zhang et al., 2022).
MicroRNAs (miRs) are non-coding ribonucleic acids (RNAs) that regulate gene expression by interacting with the three′ untranslated area (3′ UTR) of goal mRNAs (O’Brien et al., 2018). MiR-29 household, comprised of miR-29a, miR-29b, and miR-29c, shows antiviral properties, together with inhibition of HIV-1 Nef protein (Ahluwalia et al., 2008; Adoro et al., 2015; Monteleone et al., 2015). As well as, IL-21/miR-29 axis was related to HIV-1 latency, suggesting that enhancing this pathway might eradicate the virus from reservoirs (Frattari et al., 2017). Certainly, to counteract its antiviral motion, HIV-1 has developed the power to inhibit miR-29 by way of Tat antigen, selling viral latency (Bennasser et al., 2005; Ruelas and Greene, 2013; Monteleone et al., 2015). As there’s an inverse relationship between miR-29 and BRD4, HIV-1-mediated miR-29 downregulation lowers ferritinophagy by rising BRD4 (Kohnken et al., 2018; Huang et al., 2019). Just lately, miR-29 was discovered to decrease intracellular iron by inhibiting iron regulatory protein 2 (IRP-2), reducing the chance of ferroptosis and FIN (Ripa et al., 2017) (Graphical Summary). A latest preclinical examine related miR-29 household with gene expression in getting old mind, exhibiting that this miR lowers the expression of IRP-2 and the signaling with the iron responsive component (IRE), reducing the intracellular iron load (Ripa et al., 2017). Opposing this mir-29 motion, the HIV-1 glycoprotein 120 (gp 120) prompts IRP-2 by way of E2F transcription issue 1 (E2F1), precipitating ferrocytosis (Shimizu et al., 2007). That is important as a number of research demonstrated low miR-29 expression in AD, linking this miR to the pathogenesis of neurodegenerative problems and HAND (Lu et al., 2016; Müller et al., 2016; Pereira et al., 2016; Jahangard et al., 2020). Furthermore, BRD4 has inhibitory results on HIV-1 Tat protein, blocking viral latency and indicating that BRD4/miR-29 manipulation might eradicate latent HIV-1 (Zhu et al., 2012; Huang et al., 2017; Desk 1).
Taken collectively, BRD4/miR-29 might comprise an epigenetic system that opposes FIN by a number of mechanisms, together with direct antiviral motion, iron sequestration in ferritin, IRP-2 downregulation, and suppression of lysosomal perform, together with ferritinophagy. As BRD4/miR-29 axis withholds iron from pathogens, we speculate that this method might drive dietary immunity.
Potential Interventions
The position of ferroptosis in viral infections is carefully related to the idea of dietary immunity, intracellular iron sequestration to withhold it from pathogens (Núñez et al., 2018). Though protecting in opposition to infections, iron sequestration might escalate the chance of ferroptosis because it locations this biometal within the proximity of lipids, rising the chance of peroxidation (Chao et al., 2020; Chen et al., 2020). Because of this, reducing neuronal ferroptosis by upregulating BRD4 might lower ferritinophagy and neuronal ferroptosis.
On this part, we concentrate on pharmacological brokers which will decrease the FIN threat on the ELS degree.
V-Atpase Inhibitors
Underneath regular circumstances, lysosomal pH should be extremely acidic (4.5–5.5) for protein degradation to happen. That is achieved by way of vacuolar (H+) ATPase (or V-ATPase) that pumps protons into the organelle to decrease its pH (Track et al., 2020). A number of viruses and their antigens, together with HIV-1 Nef protein, usurp V-ATPase, rising ferritin autophagy and intracellular iron, in addition to the chance of ferroptosis and FIN (Lu et al., 1998; Castro-Gonzalez et al., 2021).
Over the previous twenty years, a number of V-ATPase inhibitors have been developed, together with concanamycin A, bafilomycin A1, saliphenylhalamide, and quinazolines (Garcia-Rodriguez et al., 2015). Quinazolines had been the most recent addition to the armamentarium of V-ATPase inhibitors. They’re small electrophilic molecules that comprise the widespread denominator of over 150 naturally occurring alkaloids with quite a few organic properties (Chen et al., 2017). These brokers possess anti-HIV, anticancer and anti-neurodegenerative properties, implicating ELS dysfunction in these pathologies (Colacurcio and Nixon, 2016; Hu et al., 2018; Whitton et al., 2018; Le-Nhat-Thuy et al., 2020). Certainly, the quinazolinone compound, PBT434 possess iron chelating properties suggesting that reducing this biometal might profit the sufferers with these situations (Bailey et al., 2021).
N-Acetylcysteine
Latest research have proven that N-acetylcysteine (NAC) can reverse cART-induced microglial activation and inhibit ferritinophagy (Tripathi et al., 2020). NAC is a broadly used drug, primarily as an antidote for acetaminophen overdose, however possesses many different useful results, together with correcting the oxidative stress-mediated ELS dysfunction, suggesting that it could reverse some neurological problems of HAND (Tripathi et al., 2020). Curiously, NAC has been evaluated for its senolytic properties in opposition to mind getting old, indicating potential efficacy in opposition to HAND and AD (Tardiolo et al., 2018). As well as, NAC possesses anticancer and anti-HIV, properties, additional linking ELS to those pathologies (Roederer et al., 1992; Deng et al., 2019). Furthermore, as NAC supplementation will increase GSH and GPX, it could additionally suppress ferroptosis and FIN (Karuppagounder et al., 2018; Hu et al., 2021).
Aryl-Thiazole Compounds
Aryl-thiazole compounds are novel brokers that embrace N2-[2-chloro-4(3,4,5-trimethoxy phenyl azetidin-1-yl]-N4-(substituted aryl)-1,3-thiazole-2,4-diamine (4a–g), a lipid peroxidation blocker, indicating potential useful impact in opposition to FIN (Djukic et al., 2018). Aryl-thiazole compounds possess antiviral, anticancer and anti-neurodegenerative properties by modulating γ-secretase (Lu et al., 2009; Dawood et al., 2015; Bhattarai et al., 2021). As well as, (3Z)-3-(2-[4-(aryl)-1,3-thiazol-2-yl]hydrazin-1-ylidene)-2,3-dihydro-1H-indol-2-one presents with reverse transcriptase inhibiting properties, doubtlessly reducing HIV-1 replication (Meleddu et al., 2015).
Pyridine, Acetamide, and Benzohydrazine
Pyridine, acetamide, and benzohydrazine are CatB inhibitors with antiviral, anti-neurodegenerative and anticancer properties (Prachayasittikul et al., 2017; Alizadeh and Ebrahimzadeh, 2021; Chitranshi et al., 2021). As CatB is a ferroptosis driver, the inhibitors of this cysteine protease might profit the sufferers with AD and HAND. As well as, these molecules had been proven to modulate the HIV-1 gene expression and inhibit Tat protein, suggesting antiviral properties (Balachandran et al., 2017). Different not too long ago developed CatB inhibitors are nitroxoline (8-hydroxy 5-nitroquinoline) derivatives, inhibitors of endopeptidase and exopeptidase actions of this enzyme. These medication have established antibiotic, anticancer and anti-neurodegenerative properties (Knez et al., 2015).
Ferrostatin-1 and Liproxstatin-1
Ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) comprise a brand new era of ferroptosis inhibitors that perform as radical traps and scavengers of lipid hydroperoxyl teams (Miotto et al., 2020). These brokers are potential COVID-19 therapies, whereas their inhibitors have been studied as ferroptosis inducers in most cancers cells (Subburayan et al., 2020; Yang and Lai, 2020). Furthermore, Fer-1 and Lip-1 have been evaluated for efficacy in opposition to viral infections and neurodegeneration (Chen Okay. et al., 2021; Wang et al., 2021).
Iron Chelators
Iron chelation was demonstrated to guard lysosomal membranes in opposition to peroxidative harm, reducing the chance of ferroptosis (Kurz et al., 2006). Certainly, iron chelators are at present being assessed for efficacy in opposition to neurodegenerative problems, together with AD (Dusek et al., 2016) (NCT03234686). These brokers have proven antiviral results, particularly in opposition to HIV-1 and SARS-CoV-2, suggesting that withholding iron from pathogens may be an environment friendly anti-infectious technique (van Asbeck et al., 2001; Chhabra et al., 2020). By defending lysosomal membranes, chelation remedy lowers CatB cytosolic “escape” and subsequent neurotoxicity (Lin et al., 2010). As well as, iron chelators have proven useful results in most cancers, most likely by reducing mitochondrial power manufacturing and ravenous the tumors (Fryknäs et al., 2016).
Chloroquine and Hydroxychloroquine
The anti-malaria medication, chloroquine (CQ) and hydroxychloroquine (HCQ) are autophagy blockers that accumulate within the ELS, neutralizing luminal pH. These compounds possess antiviral and anticancer properties, most likely by blocking lysosomal exocytosis (Neely et al., 2003; Halcrow et al., 2019). Curiously, latest research in sufferers with rheumatoid arthritis (RA) confirmed that extended remedy with CQ and HCQ decreased the chance of Parkinson’s illness (PD), indicating anti-neurodegenerative properties (Paakinaho et al., 2022). Certainly, as CQ and HCQ inhibit CatB, a protein implicated within the pathogenesis of each RA and PD, it’s possible that these medication inhibit CatB (Hashimoto et al., 2001; Tsujimura et al., 2015; Mahoney-Sánchez et al., 2021; Zhao et al., 2022).
Psychotropic Medication
Second era antipsychotic medication, and a number of other antidepressants had been proven to own antioxidant properties by upregulating GSH, reducing the chance of ferroptosis (Quincozes-Santos et al., 2010; Caruso et al., 2020). As well as, as GSH possesses antiviral properties, psychotropic medication might improve autophagy, facilitating the clearance of cancerous and pathogen-infected cells (Fraternale et al., 2006). Certainly, as some psychotropics enter cells by way of ELS, they could remove the viruses they encounter all through this pathway (Benton et al., 2010; Canfrán-Duque et al., 2016; Schneider et al., 2016; Vela, 2020; Fred et al., 2022). Furthermore, as a number of psychotropic medication show anticancer properties, they possible inhibit CatB, reducing the cytotoxicity of this protein (Varalda et al., 2020). Moreover, newly synthesized ferroptosis inhibitors, the phenothiazine analogs, alter autophagy, most likely explaining their efficacy in opposition to neurodegenerative problems (Liu et al., 2020; Posso et al., 2022). Curiously, the fast-acting antidepressant drug, ketamine, was discovered to upregulate miR-29, linking despair to ferroptosis, suggesting that the BRD4/miR-29 system might have antidepressant results (Stolke et al., 1980; Paul et al., 2014; Wan et al., 2018).
Cathepsin B Inhibitors
CatB dysfunction was related to a number of pathologies, together with autoimmune problems, most cancers, drug dependancy, neurodegeneration, and viral infections (Toomey et al., 2014; Li et al., 2017; Ansari et al., 2022). For instance, the anthelminthic drug, niclosamide, demonstrates anticancer, antiviral, and neuroprotective properties, possible by inhibiting CatB and restoring ELS homeostasis (Circu et al., 2016; Goulding et al., 2021; Weiss et al., 2021). Certainly, niclosamide was discovered to inhibit HIV-1 proliferation and activate PTEN-induced kinase 1 (PINK1), indicating potential profit in neurodegenerative problems and certain HAND (Niyomdecha et al., 2020; Jang et al., 2022). Curiously, sigma-1 (Sig1R) agonists, comparable to BD1047, had been proven to downregulate CatB, ameliorating HAND, particularly in cocaine customers (López et al., 2019). Alongside this line, fluvoxamine, a potent Sig1R agonist, with antiviral properties could also be a but unknown CatB inhibitor.
Conclusion
HIV-1 an infection and long-term cART, improve lysosomal ferritinophagy, releasing extreme quantities of iron, Ca2+ and CatB which will set off FIN. The host responds to this insult by activating an epigenetic system comprised of BRD4/miR-29 that blocks dysfunctional lysosomes and iron launch by way of IRP-2 and SLC7A11. As BRD4 is upregulated by low miR-29 and HIV-1 inhibits miR-29, ferritinophagy is downregulated, reducing FIN. As well as, as BRD4 inhibits HIV-1 Tat protein, modulation of BRD4/miR-29 system might eradicate latent HIV-1 from reservoirs, comparable to microglia and macrophages.
Writer Contributions
All authors listed have made a considerable, direct, and mental contribution to the work, and accredited it for publication.
Battle of Curiosity
The authors declare that the analysis was carried out within the absence of any industrial or monetary relationships that might be construed as a possible battle of curiosity.
Writer’s Notice
All claims expressed on this article are solely these of the authors and don’t essentially signify these of their affiliated organizations, or these of the writer, the editors and the reviewers. Any product that could be evaluated on this article, or declare that could be made by its producer, isn’t assured or endorsed by the writer.
References
Adoro, S., Cubillos-Ruiz, J., Chen, X., Deruaz, M., Vrbanac, V. D., Track, M., et al. (2015). IL-21 induces antiviral microRNA-29 in CD4 T cells to restrict HIV-1 an infection. Nat. Commun. 6:7562. doi: 10.1038/ncomms8562
Ahluwalia, J. Okay., Khan, S. Z., Soni, Okay., Rawat, P., Gupta, A., Hariharan, M., et al. (2008). Human mobile microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology 5:117. doi: 10.1186/1742-4690-5-117
Alamer, E., Zhong, C., and Hajnik, R. (2021). Modulation of BRD4 in HIV epigenetic regulation: implications for locating an HIV remedy. Retrovirology 18:3. doi: 10.1186/s12977-020-00547-9
Alizadeh, S. R., and Ebrahimzadeh, M. A. (2021). Antiviral actions of pyridine fused and pyridine containing heterocycles, a evaluate (from 2000 to 2020). Mini Rev. Med. Chem. 21, 2584–2611. doi: 10.2174/1389557521666210126143558
Ansari, M. A., Nadeem, A., Alshammari, M. A., Attia, S. M., Bakheet, S. A., Khan, M. R., et al. (2022). Cathepsin B inhibitor alleviates Th1, Th17, and Th22 transcription issue signaling dysregulation in experimental autoimmune encephalomyelitis. Exp. Neurol. 351:113997. doi: 10.1016/j.expneurol.2022.113997
Anthony, I. C., Ramage, S. N., Carnie, F. W., Simmonds, P., and Bell, J. E. (2006). Accelerated Tau deposition within the brains of people contaminated with human immunodeficiency virus-1 earlier than and after the arrival of extremely energetic anti-retroviral remedy. Acta Neuropathol. 111, 529–538. doi: 10.1007/s00401-006-0037-0
Ayton, S., Fake, N. G., and Bush, A. I. Alzheimer’s Illness Neuroimaging Initiative (2015). Ferritin ranges within the cerebrospinal fluid predict Alzheimer’s illness outcomes and are regulated by APOE. Nat. Commun. 6:6760. doi: 10.1038/ncomms7760
Bailey, D. Okay., Clark, W., and Kosman, D. J. (2021). The iron chelator, PBT434, modulates transcellular iron trafficking in mind microvascular endothelial cells. PLoS One 16:e0254794. doi: 10.1371/journal.pone.0254794
Balachandran, A., Wong, R., Stoilov, P., Pan, S., Blencowe, B., Cheung, P., et al. (2017). Identification of small molecule modulators of HIV-1 Tat and Rev protein accumulation. Retrovirology 14:7. doi: 10.1186/s12977-017-0330-0
Bennasser, Y., Le, S. Y., Benkirane, M., and Jeang, Okay. T. (2005). Proof that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22, 607–619. Erratum in: Immunity. 2005;22(6):773 doi: 10.1016/j.immuni.2005.03.010
Benton, T., Lynch, Okay., Dubé, B., Gettes, D. R., Tustin, N. B., Lai, J. P., et al. (2010). Selective serotonin reuptake inhibitor suppression of HIV infectivity and replication. Psychosom. Med. 72, 925–932. doi: 10.1097/PSY.0b013e3181f883ce
Bernardo, A., Agresti, C., and Levi, G. (1997). HIV-gp120 impacts the purposeful exercise of oligodendrocytes and their susceptibility to enhance. J. Neurosci. Res. 50, 946–957. doi: 10.1002/(SICI)1097-4547(19971215)50:6<946::AID-JNR5<3.0.CO;2-D
Bhattarai, S., Liu, L., and Wolfe, M. S. (2021). Discovery of aryl aminothiazole γ-secretase modulators with novel results on amyloid β-peptide manufacturing. Bioorg. Med. Chem. Lett. 54:128446. doi: 10.1016/j.bmcl.2021.128446
Blaess, M., Kaiser, L., Sauer, M., Csuk, R., and Deigner, H. P. (2020). COVID-19/SARS-CoV-2 an infection: lysosomes and lysosomotropism implicate new remedy methods and private dangers. Int. J. Mol. Sci. 21:4953. doi: 10.3390/ijms21144953
Boelaert, J. R., Weinberg, G. A., and Weinberg, E. D. (1996). Altered iron metabolism in HIV an infection: mechanisms, potential penalties, and proposals for administration. Infect. Brokers Dis. 5, 36–46.
Borrajo, A., Spuch, C., Penedo, M. A., Olivares, J. M., and Agís-Balboa, R. C. (2021). Vital position of microglia in HIV-1 related neurocognitive problems and the molecular pathways implicated in its pathogenesis. Ann. Med. 53, 43–69. doi: 10.1080/07853890.2020.1814962
Brown, L. A., Scarola, J., Smith, A. J., Sanberg, P. R., Tan, J., Giunta, B., et al. (2014). The position of tau protein in HIV-associated neurocognitive problems. Mol. Neurodegen. 9:40. doi: 10.1186/1750-1326-9-40
Buratta, S., Tancini, B., Sagini, Okay., Delo, F., Chiaradia, E., Urbanelli, L., et al. (2020). Lysosomal exocytosis, exosome launch and secretory autophagy: the autophagic- and endo-lysosomal programs go extracellular. Int. J. Mol. Sci. 21:2576. doi: 10.3390/ijms21072576
Burt, T. D., Agan, B. Okay., Marconi, V. C., He, W., Kulkarni, H., Mould, J. E., et al. (2008). Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE epsilon4/epsilon4 genotype accelerates HIV illness development. Proc. Natl. Acad. Sci. U.S.A. 105, 8718–8723. doi: 10.1073/pnas.0803526105
Calcagno, A., Celani, L., Trunfio, M., Orofino, G., Imperiale, D., Atzori, C., et al. (2021). Alzheimer dementia in folks residing with HIV. Neurol. Clin. Pract. 11, e627–e633. doi: 10.1212/CPJ.0000000000001060
Canfrán-Duque, A., Barrio, L. C., Lerma, M., de la Peña, G., Serna, J., Pastor, O., et al. (2016). First-generation antipsychotic haloperidol alters the performance of the late Endosomal/Lysosomal compartment in vitro. Int. J. Mol. Sci. 17:404. doi: 10.3390/ijms17030404
Cantres-Rosario, Y. M., Ortiz-Rodríguez, S. C., Santos-Figueroa, A. G., Plaud, M., Negron, Okay., Cotto, B., et al. (2019). HIV an infection induces extracellular Cathepsin B uptake and injury to neurons. Sci. Rep. 9:8006. doi: 10.1038/s41598-019-44463-1
Canzoniero, L. M., and Snider, B. J. (2005). Calcium in Alzheimer’s illness pathogenesis: an excessive amount of, too little or within the flawed place? J. Alzheimers Dis. 8, 147–154; dialogue 209–215. doi: 10.3233/jad-2005-8207
Cao, D., Khanal, S., Wang, L., Li, Z., Zhao, J., Nguyen, L. N., et al. (2021). A matter of life or demise: productively contaminated and Bystander CD4 T cells in early HIV an infection. Entrance. Immunol. 11:626431. doi: 10.3389/fimmu.2020.626431
Caruso, G., Grasso, M., Fidilio, A., Tascedda, F., Drago, F., and Caraci, F. (2020). Antioxidant properties of second-generation antipsychotics: concentrate on microglia. Prescribed drugs (Basel) 13:457. doi: 10.3390/ph13120457
Castro-Gonzalez, S., Shi, Y., Colomer-Lluch, M., Track, Y., Mowery, Okay., Almodovar, S., et al. (2021). HIV-1 Nef counteracts autophagy restriction by enhancing the affiliation between BECN1 and its inhibitor BCL2 in a PRKN-dependent method. Autophagy 17, 553–577. doi: 10.1080/15548627.2020.1725401
Chang, H. C., Bayeva, M., Taiwo, B., Palella, F. J. Jr., Hope, T. J., and Ardehali, H. (2015). Brief communication: excessive mobile iron ranges are related to elevated HIV an infection and replication. AIDS Res. Hum. Retroviruses 31, 305–312. doi: 10.1089/assist.2014.0169
Chao, Y. Okay., Chang, S. Y., and Grimm, C. (2020). Endo-Lysosomal cation channels and infectious illnesses. Rev. Physiol. Biochem. Pharmacol. [Online ahead of print], doi: 10.1007/112_2020_31
Chauhan, A., and Khandkar, M. (2015). Endocytosis of human immunodeficiency virus 1 (HIV-1) in astrocytes: a fiery path to its vacation spot. Microb. Pathog. 78, 1–6. doi: 10.1016/j.micpath.2014.11.003
Chen, D., Zheng, Q., Solar, L., Ji, M., Li, Y., Deng, H., et al. (2021). ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral egress. Dev. Cell. 56, 3250.e5–3263.e5. doi: 10.1016/j.devcel.2021.10.006
Chen, G., Zhang, Z., Wei, Z., Cheng, Q., Li, X., Li, W., et al. (2012). Lysosomal exocytosis in Schwann cells contributes to axon remyelination. Glia 60, 295–305. doi: 10.1002/glia.21263
Chen, I.P., Longbotham, J. E., McMahon, S., Suryawanshi, R. Okay., Carlson-Stevermer, J., Gupta, M., et al. (2021). Viral E protein neutralizes BET protein-mediated post-entry antagonism of SARS-CoV-2. bioRxiv [preprint] 2021.11.14.468537. doi: 10.1101/2021.11.14.468537
Chen, Okay., Jiang, X., Wu, M., Cao, X., Bao, W., and Zhu, L. Q. (2021). Ferroptosis, a possible therapeutic goal in Alzheimer’s illness. Entrance. Cell Dev. Biol. 9:704298. doi: 10.3389/fcell.2021.704298
Chen, X., Cao, R., and Zhong, W. (2019). Host calcium channels and pumps in viral infections. Cells 9:94. doi: 10.3390/cells9010094
Chen, X., Yu, C., Kang, R., and Tang, D. (2020). Iron metabolism in ferroptosis. Entrance. Cell Dev. Biol. 8:590226. doi: 10.3389/fcell.2020.590226
Chen, Y. C., Backus, Okay. M., Merkulova, M., Yang, C., Brown, D., Cravatt, B. F., et al. (2017). Covalent modulators of the vacuolar ATPase. J. Am. Chem. Soc. 139, 639–642. doi: 10.1021/jacs.6b12511
Chhabra, R., Saha, A., Chamani, A., Schneider, N., Shah, R., and Nanjundan, M. (2020). Iron pathways and iron chelation approaches in viral, microbial, and fungal infections. Prescribed drugs (Basel) 13:275. doi: 10.3390/ph13100275
Chitranshi, N., Kumar, A., Sheriff, S., Gupta, V., Godinez, A., Saks, D., et al. (2021). Identification of Novel Cathepsin B inhibitors with implications in Alzheimer’s illness: computational refining and biochemical analysis. Cells 10:1946. doi: 10.3390/cells10081946
Chiu, L. Y., Gong, F., and Miller, Okay. M. (2017). Bromodomain proteins: repairing DNA injury inside chromatin. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372:20160286. doi: 10.1098/rstb.2016.0286
Chivero, E. T., Guo, M. L., Periyasamy, P., Liao, Okay., Callen, S. E., and Buch, S. (2017). HIV-1 Tat primes and prompts microglial NLRP3 inflammasome-mediated neuroinflammation. J. Neurosci. 37, 3599–3609. doi: 10.1523/JNEUROSCI.3045-16.2017
Choi, Y., Bowman, J. W., and Jung, J. U. (2018). Autophagy throughout viral an infection — a double-edged sword. Nat. Rev. Microbiol. 16, 341–354. doi: 10.1038/s41579-018-0003-6
Circu, M. L., Dykes, S. S., Carroll, J., Kelly, Okay., Galiano, F., Greer, A., et al. (2016). A novel excessive content material imaging-based display screen identifies the Anti-helminthic niclosamide as an inhibitor of lysosome anterograde trafficking and prostate most cancers cell invasion. PLoS One 11:e0146931. Erratum in: PLoS One. 2016;11(3):e0151718 doi: 10.1371/journal.pone.0146931
Colacurcio, D. J., and Nixon, R. A. (2016). Problems of lysosomal acidification-The rising position of v-ATPase in getting old and neurodegenerative illness. Ageing Res. Rev. 32, 75–88. doi: 10.1016/j.arr.2016.05.004
Corder, E., Robertson, Okay., and Lannfelt, L. (1998). HIV-infected topics with the E4 allele for APOE have extra dementia and peripheral neuropathy. Nat. Med. 4, 1182–1184. doi: 10.1038/2677
Daniel, W. A., Wójcikowski, J., and Pałucha, A. (2001). Intracellular distribution of psychotropic medication within the gray and white matter of the mind: the position of lysosomal trapping. Br. J. Pharmacol. 134, 807–814. doi: 10.1038/sj.bjp.0704319
Dawood, Okay. M., Eldebss, T. M., El-Zahabi, H. S., and Yousef, M. H. (2015). Synthesis and antiviral exercise of some new bis-1,3-thiazole derivatives. Eur. J. Med. Chem. 102, 266–276. doi: 10.1016/j.ejmech.2015.08.005
Deng, J., Liu, A. D., Hou, G. Q., Zhang, X., Ren, Okay., Chen, X. Z., et al. (2019). N-acetylcysteine decreases malignant traits of glioblastoma cells by inhibiting Notch2 signaling. J. Exp. Clin. Most cancers Res. 38:2. doi: 10.1186/s13046-018-1016-8
Diouf, I., Fazlollahi, A., Bush, A. I., and Ayton, S. Alzheimer’s Illness Neuroimaging Initiative (2019). Cerebrospinal fluid ferritin ranges predict mind hypometabolism in folks with underlying β-amyloid pathology. Neurobiol. Dis. 124, 335–339. doi: 10.1016/j.nbd.2018.12.010
Djukic, M., Fesatidou, M., Xenikakis, I., Geronikaki, A., Angelova, V. T., Savic, V., et al. (2018). In vitro antioxidant exercise of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole. Chem. Biol. Work together. 286, 119–131. doi: 10.1016/j.cbi.2018.03.013
Donati, B., Lorenzini, E., and Ciarrocchi, A. (2018). BRD4 and Most cancers: going past transcriptional regulation. Mol. Most cancers 17:164. doi: 10.1186/s12943-018-0915-9
Dusek, P., Schneider, S. A., and Aaseth, J. (2016). Iron chelation within the remedy of neurodegenerative illnesses. J. Hint Elem. Med. Biol. 38, 81–92. doi: 10.1016/j.jtemb.2016.03.010
Fan, Y., and He, J. J. (2016). HIV-1 Tat promotes lysosomal exocytosis in astrocytes and contributes to astrocyte-mediated tat neurotoxicity. J. Biol. Chem. 291, 22830–22840. doi: 10.1074/jbc.M116.731836
Ferrell, D., and Giunta, B. (2014). The affect of HIV-1 on neurogenesis: implications for HAND. Cell Mol. Life Sci. 71, 4387–4392. doi: 10.1007/s00018-014-1702-4
Fraternale, A., Paoletti, M. F., Casabianca, A., Oiry, J., Clayette, P., Vogel, J. U., et al. (2006). Antiviral and immunomodulatory properties of latest pro-glutathione (GSH) molecules. Curr. Med. Chem. 13, 1749–1755. doi: 10.2174/092986706777452542
Fred, S. M., Kuivanen, S., and Ugurlu, H. (2022). Antidepressant and antipsychotic medication cut back viral an infection by SARS-CoV-2 and fluoxetine reveals antiviral exercise in opposition to the novel variants in vitro. Entrance. Pharmacol. 12:755600. doi: 10.3389/fphar.2021.755600
Fredericksen, B. L., Wei, B. L., Yao, J., Luo, T., and Garcia, J. V. (2002). Inhibition of endosomal/lysosomal degradation will increase the infectivity of human immunodeficiency virus. J. Virol. 76, 11440–11446. doi: 10.1128/jvi.76.22.11440-11446.2002
Fryknäs, M., Zhang, X., Bremberg, U., Senkowski, W., Olofsson, M. H., Brandt, P., et al. (2016). Iron chelators goal each proliferating and quiescent most cancers cells. Sci. Rep. 6:38343. doi: 10.1038/srep38343
Fujisawa, T., and Filippakopoulos, P. (2017). Capabilities of bromodomain-containing proteins and their roles in homeostasis and most cancers. Nat. Rev. Mol. Cell Biol. 18, 246–262. doi: 10.1038/nrm.2016.143
Gao, Y., Chen, Y., Zhan, S., Zhang, W., Xiong, F., and Ge, W. (2017). Complete proteome evaluation of lysosomes reveals the varied perform of macrophages in immune responses. Oncotarget 8, 7420–7440. doi: 10.18632/oncotarget.14558
Garcia-Rodriguez, J., Mendiratta, S., White, M. A., Xie, X. S., and De Brabander, J. Okay. (2015). Synthesis and structure-activity research of the V-ATPase inhibitor saliphenylhalamide (SaliPhe) and simplified analogs. Bioorg. Med. Chem. Lett. 25, 4393–4398. doi: 10.1016/j.bmcl.2015.09.021
Girgis, R. R., and Lieberman, J. A. (2021). Anti-viral properties of antipsychotic medicines within the time of COVID-19. Psychiatry Res. 295:113626. doi: 10.1016/j.psychres.2020.113626
Gkouskou, Okay., Vasilogiannakopoulou, T., Andreakos, E., Davanos, N., Gazouli, M., Sanoudou, D., et al. (2021). COVID-19 enters the increasing community of apolipoprotein E4-related pathologies. Redox Biol. 41:101938. doi: 10.1016/j.redox.2021.101938
Gleitze, S., Paula-Lima, A., Núñez, M. T., and Hidalgo, C. (2021). The calcium-iron connection in ferroptosis-mediated neuronal demise. Free Radic Biol. Med. 175, 28–41. doi: 10.1016/j.freeradbiomed.2021.08.231
Gondi, C. S., and Rao, J. S. (2013). Cathepsin B as a most cancers goal. Knowledgeable Opin. Ther. Targets 17, 281–291. doi: 10.1517/14728222.2013.740461
Gordon, D. E., Jang, G. M., and Bouhaddou, M. (2020). A SARS-CoV-2 protein interplay map reveals targets for drug repurposing. Nature 583, 459–468. doi: 10.1038/s41586-020-2286-9
Gorshkov, Okay., Chen, C. Z., Bostwick, R., Rasmussen, L., Tran, B. N., Cheng, Y. S., et al. (2021). The SARS-CoV-2 cytopathic impact is blocked by lysosome alkalizing small molecules. ACS Infect. Dis. 7, 1389–1408. doi: 10.1021/acsinfecdis.0c00349
Goulding, S. R., Lévesque, M., Sullivan, A. M., Collins, L. M., and O’Keeffe, G. W. (2021). Quinacrine and niclosamide promote neurite development in midbrain dopaminergic neurons by means of the canonical BMP-smad pathway and shield in opposition to neurotoxin and α-Synuclein-Induced neurodegeneration. Mol. Neurobiol. 58, 3405–3416. doi: 10.1007/s12035-021-02351-8
Ha, S. D., Park, S., Hattlmann, C. J., Barr, S. D., and Kim, S. O. (2012). Inhibition or deficiency of cathepsin B leads defects in HIV-1 Gag pseudoparticle launch in macrophages and HEK293T cells. Antiviral Res. 93, 175–184. doi: 10.1016/j.antiviral.2011.11.009
Hajmirza, A., Emadali, A., Gauthier, A., Casasnovas, O., Gressin, R., and Callanan, M. B. (2018). BET household protein BRD4: an rising actor in NFκB signaling in irritation and most cancers. Biomedicines 6:16. doi: 10.3390/biomedicines6010016
Halcrow, P., Datta, G., Ohm, J. E., Soliman, M. L., Chen, X., and Geiger, J. D. (2019). Function of endolysosomes and pH within the pathogenesis and remedy of glioblastoma. Most cancers Rep. 2:e1177. doi: 10.1002/cnr2.1177
PubMed Summary | CrossRef Full Textual content | Google Scholar
Hashimoto, Y., Kakegawa, H., Narita, Y., Hachiya, Y., Hayakawa, T., Kos, J., et al. (2001). Significance of cathepsin B accumulation in synovial fluid of rheumatoid arthritis. Biochem. Biophys. Res. Commun. 283, 334–339. doi: 10.1006/bbrc.2001.4787
Hook, G., Jacobsen, J. S., Grabstein, Okay., Kindy, M., and Hook, V. (2015). Cathepsin B is a brand new drug goal for traumatic mind harm therapeutics: proof for E64d as a promising lead drug candidate. Entrance. Neurol. 6:178. doi: 10.3389/fneur.2015.00178
Hook, V., Yoon, M., Mosier, C., Ito, G., Podvin, S., Head, B. P., et al. (2020). Cathepsin B in neurodegeneration of Alzheimer’s illness, traumatic mind harm, and associated mind problems. Biochim. Biophys. Acta Proteins Proteom. 1868:140428. doi: 10.1016/j.bbapap.2020.140428
Hu, C. J., Chen, Y. T., Fang, Z. S., Chang, W. S., and Chen, H. W. (2018). Antiviral efficacy of nanoparticulate vacuolar ATPase inhibitors in opposition to influenza virus an infection. Int. J. Nanomed. 13, 8579–8593. doi: 10.2147/IJN.S185806
Hu, M., Zhang, Y., Ma, S., Li, J., Wang, X., Liang, M., et al. (2021). Suppression of uterine and placental ferroptosis by N-acetylcysteine in a rat mannequin of polycystic ovary syndrome. Mol. Hum. Reprod. 27:gaab067. doi: 10.1093/molehr/gaab067
Hu, Y. B., Dammer, E. B., Ren, R. J., and Wang, G. (2015). The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl. Neurodegener. 4:18. doi: 10.1186/s40035-015-0041-1
Huang, H., Liu, S., Jean, M., Simpson, S., Huang, H., Merkley, M., et al. (2017). A novel bromodomain inhibitor reverses HIV-1 latency by means of particular binding with BRD4 to advertise Tat and P-TEFb affiliation. Entrance. Microbiol. 8:1035. doi: 10.3389/fmicb.2017.01035
Huang, Y., Yang, C., Xu, X. F., Xu, W., and Liu, S. (2020). Structural and purposeful properties of SARS-CoV-2 spike protein: potential antivirus drug improvement for COVID-19. Acta Pharmacol. Sin. 41, 1141–1149. doi: 10.1038/s41401-020-0485-4
Huang, Y. H., Kuo, H. C., Yang, Y. L., and Wang, F. S. (2019). MicroRNA-29a is a key regulon that regulates BRD4 and mitigates liver fibrosis in mice by inhibiting hepatic stellate cell activation. Int. J. Med. Sci. 16, 212–220. doi: 10.7150/ijms.29930
Hui, L., Chen, X., Haughey, N. J., and Geiger, J. D. (2012). Function of endolysosomes in HIV-1 Tat-induced neurotoxicity. ASN Neuro 4, 243–252. doi: 10.1042/AN20120017
Jahangard, Y., Monfared, H., Moradi, A., Zare, M., Mirnajafi-Zadeh, J., and Mowla, S. J. (2020). Therapeutic results of transplanted exosomes containing miR-29b to a rat mannequin of Alzheimer’s illness. Entrance. Neurosci. 14:564. doi: 10.3389/fnins.2020.00564
Jang, H. J., Kim, Y. Y., Lee, Okay. M., Shin, J. E., and Yun, J. (2022). The PINK1 activator niclosamide mitigate mitochondrial dysfunction and thermal hypersensitivity in a paclitaxel-induced drosophila mannequin of peripheral neuropathy. Biomedicines 10:863. doi: 10.3390/biomedicines10040863
Jayaseelan, V. P., and Paramasivam, A. (2020). Repurposing calcium channel blockers as antiviral medication. J. Cell Commun. Sign. 14, 467–468. doi: 10.1007/s12079-020-00579-y
Jensen, B. Okay., Monnerie, H., and Mannell, M. V. (2015). Altered oligodendrocyte maturation and myelin upkeep: the position of antiretrovirals in HIV-associated neurocognitive problems. J. Neuropathol. Exp. Neurol. 74, 1093–1118. doi: 10.1097/NEN.0000000000000255
Jensen, B. Okay., Roth, L. M., Grinspan, J. B., and Jordan-Sciutto, Okay. L. (2019). White matter loss and oligodendrocyte dysfunction in HIV: a consequence of the an infection, the antiretroviral remedy or each? Mind Res. 1724:146397. doi: 10.1016/j.brainres.2019.146397
Jhelum, P., Santos-Nogueira, E., Teo, W., Haumont, A., Lenoël, I., Stys, P. Okay., et al. (2020). Ferroptosis mediates cuprizone-induced lack of oligodendrocytes and demyelination. J. Neurosci. 40, 9327–9341. doi: 10.1523/JNEUROSCI.1749-20.2020
Jiang, S., and Bhaskar, Okay. (2020). Degradation and transmission of Tau by autophagic-endolysosomal networks and potential therapeutic targets for tauopathy. Entrance. Mol. Neurosci. 13:586731. doi: 10.3389/fnmol.2020.586731
Jiang, X., Stockwell, B. R., and Conrad, M. (2021). Ferroptosis: mechanisms, biology and position in illness. Nat. Rev. Mol. Cell. Biol. 22, 266–282. doi: 10.1038/s41580-020-00324-8
Pleasure, B., Sivadasan, R., Abraham, T. E., John, M., Sobhan, P. Okay., and Seervi, M. (2010). Lysosomal destabilization and cathepsin B contributes for cytochrome c launch and caspase activation in embelin-induced apoptosis. Mol. Carcinog. 49, 324–336. doi: 10.1002/mc.20599
Jung, M., Philpott, M., Müller, S., Schulze, J., Badock, V., Eberspächer, U., et al. (2014). Affinity map of bromodomain protein 4 (BRD4) interactions with the histone H4 tail and the small molecule inhibitor JQ1. J. Biol. Chem. 289, 9304–9319. doi: 10.1074/jbc.M113.523019
Kagerer, S. M., van Bergen, J. M. G., Li, X., Quevenco, F. C., Gietl, A. F., Studer, S., et al. (2020). APOE4 moderates results of cortical iron on synchronized default mode community exercise in cognitively wholesome old-aged adults. Alzheimers Dement (Amst.) 12:e12002. doi: 10.1002/dad2.12002
Kapralov, A. A., Yang, Q., Dar, H. H., Tyurina, Y. Y., Anthonymuthu, T. S., Kim, R., et al. (2020). Redox lipid reprogramming instructions susceptibility of macrophages and microglia to ferroptotic demise. Nat. Chem. Biol. 16, 278–290. doi: 10.1038/s41589-019-0462-8
Karuppagounder, S. S., Alin, L., Chen, Y., Model, D., Bourassa, M. W., Dietrich, Okay., et al. (2018). N-acetylcysteine targets 5 lipoxygenase-derived, poisonous lipids and may synergize with prostaglandin E2 to inhibit ferroptosis and enhance outcomes following hemorrhagic stroke in mice. Ann. Neurol. 84, 854–872. doi: 10.1002/ana.25356
Kenkhuis, B., Somarakis, A., de Haan, L., Dzyubachyk, O., IJsselsteijn, M. E., de Miranda, N. F. C. C., et al. (2021). Iron loading is a outstanding function of activated microglia in Alzheimer’s illness sufferers. Acta Neuropathol. Commun. 9:27. doi: 10.1186/s40478-021-01126-5
Khacho, M., Clark, A., Svoboda, D. S., MacLaurin, J. G., Lagace, D. C., Park, D. S., et al. (2017). Mitochondrial dysfunction underlies cognitive defects on account of neural stem cell depletion and impaired neurogenesis. Hum. Mol. Genet. 26, 3327–3341. doi: 10.1093/hmg/ddx217
Khan, N., Chen, X., and Geiger, J. D. (2020). Function of endolysosomes in extreme acute respiratory syndrome Coronavirus-2 an infection and coronavirus illness 2019 pathogenesis: implications for potential therapies. Entrance. Pharmacol. 11:595888. doi: 10.3389/fphar.2020.595888
Kim, S. Y., Zhang, X., Schiattarella, G. G., Altamirano, F., Ramos, T. A. R., French, Okay. M., et al. (2020). Epigenetic Reader BRD4 (Bromodomain-Containing Protein 4) governs nucleus-encoded mitochondrial transcriptome to manage cardiac perform. Circulation 142, 2356–2370. doi: 10.1161/CIRCULATIONAHA.120.047239
Kimura-Kuroda, J., Nagashima, Okay., and Yasui, Okay. (1994). Inhibition of myelin formation by HIV-1 gp120 in rat cerebral cortex tradition. Arch. Virol. 137, 81–99. doi: 10.1007/BF01311175
Knez, D., Brus, B., Coquelle, N., Sosič, I., Šink, R., Brazzolotto, X., et al. (2015). Construction-based improvement of nitroxoline derivatives as potential multifunctional anti-Alzheimer brokers. Bioorg. Med. Chem. 23, 4442–4452. doi: 10.1016/j.bmc.2015.06.010
Kohnken, R., Wen, J., Mundy-Bosse, B., McConnell, Okay., Keiter, A., Grinshpun, L., et al. (2018). Diminished microRNA-29b degree is related to BRD4-mediated activation of oncogenes in cutaneous T-cell lymphoma. Blood 131, 771–781. doi: 10.1182/blood-2017-09-805663
Korb, E., Herre, M., Zucker-Scharff, I., Darnell, R. B., and Allis, C. D. (2015). BET protein Brd4 prompts transcription in neurons and BET inhibitor Jq1 blocks reminiscence in mice. Nat. Neurosci. 18, 1464–1473. doi: 10.1038/nn.4095
Kos, J., Mitrović, A., and Mirković, B. (2014). The present stage of cathepsin B inhibitors as potential anticancer brokers. Future Med. Chem. 6, 1355–1371. doi: 10.4155/fmc.14.73
Kreher, C., Favret, J., Maulik, M., and Shin, D. (2021). Lysosomal features in glia related to neurodegeneration. Biomolecules 11:400. doi: 10.3390/biom11030400
Kuo, C. L., Pilling, L. C., Atkins, J. L., Masoli, J. A. H., Delgado, J., Kuchel, G. A., et al. (2020). APOE e4 genotype predicts extreme COVID-19 within the UK biobank neighborhood cohort. J. Gerontol. A Biol. Sci. Med. Sci. 75, 2231–2232. doi: 10.1093/gerona/glaa131
Kurz, T., Gustafsson, B., and Brunk, U. T. (2006). Intralysosomal iron chelation protects in opposition to oxidative stress-induced mobile injury. FEBS J. 273, 3106–3117. doi: 10.1111/j.1742-4658.2006.05321.x
Kuzu, O. F., Gowda, R., Noory, M. A., and Robertson, G. P. (2017). Modulating most cancers cell survival by concentrating on intracellular ldl cholesterol transport. Br. J. Most cancers 117, 513–524. doi: 10.1038/bjc.2017.200
Lackner, P., Kuenz, B., Reindl, M., Morandell, M., Berger, T., Schmutzhard, E., et al. (2010). Antibodies to myelin oligodendrocyte glycoprotein in HIV-1 related neurocognitive dysfunction: a cross-sectional cohort examine. J. Neuroinflamm. 7:79. doi: 10.1186/1742-2094-7-79
Lam, F. C., Kong, Y. W., Huang, Q., Vu Han, T. L., Maffa, A. D., Kasper, E. M., et al. (2020). BRD4 prevents the buildup of R-loops and protects in opposition to transcription–replication collision occasions and DNA injury. Nat. Commun. 11:4083. doi: 10.1038/s41467-020-17503-y
Le-Nhat-Thuy, G., Nguyen Thi, N., Pham-The, H., Dang Thi, T. A., Nguyen Thi, H., Nguyen Thi, T. H., et al. (2020). Synthesis and organic analysis of novel quinazoline-triazole hybrid compounds with potential use in Alzheimer’s illness. Bioorg. Med. Chem. Lett. 30:127404. doi: 10.1016/j.bmcl.2020.127404
Li, X., Baek, G., Ramanand, S. G., Sharp, A., Gao, Y., Yuan, W., et al. (2018). BRD4 promotes DNA restore and mediates the formation of TMPRSS2-ERG gene rearrangements in prostate most cancers. Cell Rep. 22, 796–808. doi: 10.1016/j.celrep.2017.12.078
Li, Y. Y., Fang, J., and Ao, G. Z. (2017). Cathepsin B and L inhibitors: a patent evaluate (2010 – current). Knowledgeable Opin. Ther. Pat. 27, 643–656. doi: 10.1080/13543776.2017.1272572
Lin, Y., Epstein, D. L., and Liton, P. B. (2010). Intralysosomal iron induces lysosomal membrane permeabilization and cathepsin D-mediated cell demise in trabecular meshwork cells uncovered to oxidative stress. Make investments. Ophthalmol. Vis. Sci. 51, 6483–6495. doi: 10.1167/iovs.10-5410
Lisi, L., Laudati, E., Miscioscia, T. F., Dello Russo, C., Topai, A., and Navarra, P. (2016). Antiretrovirals inhibit arginase in human microglia. J. Neurochem. 136, 363–372. doi: 10.1111/jnc.13393
Liu, J., Bandyopadhyay, I., Zheng, L., Khdour, O. M., and Hecht, S. M. (2020). Antiferroptotic exercise of phenothiazine analogues: a novel therapeutic technique for oxidative stress associated illness. ACS Med. Chem. Lett. 11, 2165–2173. doi: 10.1021/acsmedchemlett.0c00293
López, O. V., Gorantla, S., Segarra, A. C., Andino Norat, M. C., Álvarez, M., Skolasky, R. L., et al. (2019). Sigma-1 receptor antagonist (BD1047) decreases Cathepsin B secretion in HIV-infected macrophages uncovered to cocaine. J. Neuroimmune Pharmacol. 14, 226–240. doi: 10.1007/s11481-018-9807-4
Lu, J., Hou, Y., Ge, S., Wang, X., Wang, J., Hu, T., et al. (2021). Screened antipsychotic medication inhibit SARS-CoV-2 binding with ACE2 in vitro. Life Sci. 266:118889. doi: 10.1016/j.lfs.2020.118889
Lu, P., Qu, X., and Shen, Y. (2016). The BET inhibitor OTX015 reactivates latent HIV-1 by means of P-TEFb. Sci. Rep. 6:24100. doi: 10.1038/srep24100
Lu, X., Yu, H., Liu, S. H., Brodsky, F. M., and Peterlin, B. M. (1998). Interactions between HIV1 Nef and vacuolar ATPase facilitate the internalization of CD4. Immunity 8, 647–656. doi: 10.1016/s1074-7613(00)80569-5
Lu, Y., Li, C. M., Wang, Z., Ross, C. R. II, Chen, J., Dalton, J. T., et al. (2009). Discovery of 4-substituted methoxybenzoyl-aryl-thiazole as novel anticancer brokers: synthesis, organic analysis, and structure-activity relationships. J. Med. Chem. 52, 1701–1711. doi: 10.1021/jm801449a
Mahoney-Sánchez, L., Bouchaoui, H., Ayton, S., Devos, D., Duce, J. A., and Devedjian, J. C. (2021). Ferroptosis and its potential position within the physiopathology of Parkinson’s Illness. Prog. Neurobiol. 196:101890. doi: 10.1016/j.pneurobio.2020.101890
Majerníková, N., den Dunnen, W. F. A., and Dolga, A. M. (2021). The potential of ferroptosis-targeting therapies for Alzheimer’s illness: from mechanism to transcriptomic evaluation. Entrance. Ageing Neurosci. 13:745046. doi: 10.3389/fnagi.2021.745046
Meleddu, R., Distinto, S., Corona, A., Bianco, G., Cannas, V., Esposito, F., et al. (2015). (3Z)-3-(2-[4-(aryl)-1,3-thiazol-2-yl]hydrazin-1-ylidene)-2,3-dihydro-1H-indol-2-one derivatives as twin inhibitors of HIV-1 reverse transcriptase. Eur. J. Med. Chem. 93, 452–460.
Milanini, B., Samboju, V., Cobigo, Y., Paul, R., Javandel, S., Hellmuth, J., et al. (2019). Longitudinal mind atrophy patterns and neuropsychological efficiency in older adults with HIV-associated neurocognitive dysfunction in contrast with early Alzheimer’s illness. Neurobiol. Ageing 82, 69–76. doi: 10.1016/j.neurobiolaging.2019.07.006
Miotto, G., Rossetto, M., Di Paolo, M. L., Orian, L., Venerando, R., Roveri, A., et al. (2020). Perception into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 28:101328. doi: 10.1016/j.redox.2019.101328
Mita, M. M., and Mita, A. C. (2020). Bromodomain inhibitors a decade later: a promise unfulfilled? Br. J. Most cancers 123, 1713–1714. doi: 10.1038/s41416-020-01079-x
Mitrović, A., Mirković, B., Sosič, I., Gobec, S., and Kos, J. (2016). Inhibition of endopeptidase and exopeptidase exercise of cathepsin B impairs extracellular matrix degradation and tumour invasion. Biol. Chem. 397, 165–174. doi: 10.1515/hsz-2015-0236
Miyanishi, Okay., Sato, A., Kihara, N., Utsunomiya, R., and Tanaka, J. (2021). Synaptic elimination by microglia and disturbed increased mind features. Neurochem. Int. 142:104901. doi: 10.1016/j.neuint.2020.104901
Monteleone, Okay., Selvaggi, C., Cacciotti, G., Falasca, F., Mezzaroma, I., D’Ettorre, G., et al. (2015). MicroRNA-29 household expression and its relation to antiviral immune response and viro-immunological markers in HIV-1-infected sufferers. BMC Infect. Dis. 15:51. doi: 10.1186/s12879-015-0768-4
Mujtaba, S., Zeng, L., and Zhou, M. M. (2007). Construction and acetyl-lysine recognition of the bromodomain. Oncogene 26, 5521–5527. doi: 10.1038/sj.onc.1210618
Müller, M., Jäkel, L., Bruinsma, I. B., Claassen, J. A., Kuiperij, H. B., and Verbeek, M. M. (2016). MicroRNA-29a is a candidate biomarker for Alzheimer’s illness in cell-free cerebrospinal fluid. Mol. Neurobiol. 53, 2894–2899. doi: 10.1007/s12035-015-9156-8
Nagakannan, P., Islam, M. I., Conrad, M., and Eftekharpour, E. (2021). Cathepsin B is an executioner of ferroptosis. Biochim. Biophys. Acta Mol. Cell. Res. 1868:118928. doi: 10.1016/j.bbamcr.2020.118928
Nakanishi, H. (2020). Microglial cathepsin B as a key driver of inflammatory mind illnesses and mind getting old. Neural Regen. Res. 15, 25–29. doi: 10.4103/1673-5374.264444
Nardacci, R., Ciccosanti, F., Marsella, C., Ippolito, G., Piacentini, M., and Fimia, G. M. (2017). Function of autophagy in HIV an infection and pathogenesis. J. Intern. Med. 281, 422–432. doi: 10.1111/joim.12596
Nasrabady, S. E., Rizvi, B., Goldman, J. E., and Brickman, A. M. (2018). White matter adjustments in Alzheimer’s illness: a concentrate on myelin and oligodendrocytes. Acta Neuropathol. Commun. 6:22. doi: 10.1186/s40478-018-0515-3
Neely, M., Kalyesubula, I., Bagenda, D., Myers, C., and Olness, Okay. (2003). Impact of chloroquine on human immunodeficiency virus (HIV) vertical transmission. Afr. Well being Sci. 3, 61–67.
Niyomdecha, N., Suptawiwat, O., Boonarkart, C., Jitobaom, Okay., and Auewarakul, P. (2020). Inhibition of human immunodeficiency virus kind 1 by niclosamide by means of mTORC1 inhibition. Heliyon 6:e04050. doi: 10.1016/j.heliyon.2020.e04050
Nobuta, H., Yang, N., Ng, Y. H., Marro, S. G., Sabeur, Okay., Chavali, M., et al. (2019). Oligodendrocyte demise in Pelizaeus-Merzbacher illness is rescued by iron chelation. Cell Stem Cell 25, 531.e6–541.e6. doi: 10.1016/j.stem.2019.09.003
Núñez, G., Sakamoto, Okay., and Soares, M. P. (2018). Innate dietary immunity. J. Immunol. 201, 11–18. doi: 10.4049/jimmunol.1800325
O’Brien, J., Hayder, H., Zayed, Y., and Peng, C. (2018). Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Entrance. Endocrinol. (Lausanne) 9:402. doi: 10.3389/fendo.2018.00402
Osorio, C., Sfera, A., Anton, J. J., Thomas, Okay. G., Andronescu, C. V., Li, E., et al. (2022). Virus-Induced membrane fusion in neurodegenerative problems. Entrance. Cell. Infect. Microbiol. 12:845580. doi: 10.3389/fcimb.2022.845580
Paakinaho, A., Koponen, M., Tiihonen, M., Kauppi, M., Hartikainen, S., and Tolppanen, A. M. (2022). Illness-modifying antirheumatic medication and threat of parkinson illness: nested case-control examine of individuals with rheumatoid arthritis. Neurology 98, e1273–e1281. doi: 10.1212/WNL.0000000000013303
Padmanabhan, P., Desikan, R., and Dixit, N. M. (2020). Concentrating on TMPRSS2 and Cathepsin B/L collectively could also be synergistic in opposition to SARS-CoV-2 an infection. PLoS Comput. Biol. 16:e1008461. doi: 10.1371/journal.pcbi.1008461
Patton, S. M., Wang, Q., and Hulgan, T. (2017). Cerebrospinal fluid (CSF) biomarkers of iron standing are related to CSF viral load, antiretroviral remedy, and demographic components in HIV-infected adults. Fluids Boundaries CNS 14:11. doi: 10.1186/s12987-017-0058-1
Paul, R. Okay., Singh, N. S., Khadeer, M., Moaddel, R., Sanghvi, M., Inexperienced, C. E., et al. (2014). (R,S)-Ketamine metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine improve the mammalian goal of rapamycin perform. Anesthesiology 121, 149–159. doi: 10.1097/ALN.0000000000000285
Pedrera, L., Espiritu, R. A., and Ros, U. (2021). Ferroptotic pores induce Ca2+ fluxes and ESCRT-III activation to modulate cell demise kinetics. Cell Demise Differ. 28, 1644–1657. doi: 10.1038/s41418-020-00691-x
Pereira, P. A., Tomás, J. F., Queiroz, J. A., Figueiras, A. R., and Sousa, F. (2016). Recombinant pre-miR-29b for Alzheimer’s illness therapeutics. Sci. Rep. 6:19946. doi: 10.1038/srep19946
Pérez-Salvia, M., and Esteller, M. (2017). Bromodomain inhibitors and most cancers remedy: from buildings to functions. Epigenetics 12, 323–339. doi: 10.1080/15592294.2016.1265710
Petretich, M., Demont, E. H., and Grandi, P. (2020). Area-selective concentrating on of BET proteins in most cancers and immunological illnesses. Curr. Opin. Chem. Biol. 57, 184–193. doi: 10.1016/j.cbpa.2020.02.003
Pichet Binette, A., Theaud, G., Rheault, F., Roy, M., Collins, D. L., Levin, J., et al. (2021). Bundle-specific associations between white matter microstructure and Aβ and tau pathology in preclinical Alzheimer’s illness. Elife 10:e62929. doi: 10.7554/eLife.62929
Platt, F. M., Boland, B., and van der Spoel, A. C. (2012). The cell biology of illness: lysosomal storage problems: the mobile affect of lysosomal dysfunction. J. Cell. Biol. 199, 723–734. doi: 10.1083/jcb.201208152
Polanco, J. C., Hand, G. R., Briner, A., Li, C., and Götz, J. (2021). Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Acta Neuropathol. 141, 235–256. doi: 10.1007/s00401-020-02254-3
PubMed Summary | CrossRef Full Textual content | Google Scholar
Posso, M. C., Domingues, F. C., Ferreira, S., and Silvestre, S. (2022). Growth of phenothiazine hybrids with potential medicinal curiosity: a evaluate. Molecules 27:276. doi: 10.3390/molecules27010276
Prachayasittikul, S., Pingaew, R., Worachartcheewan, A., Sinthupoom, N., Prachayasittikul, V., Ruchirawat, S., et al. (2017). Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer brokers. Mini Rev. Med. Chem. 17, 869–901. doi: 10.2174/1389557516666160923125801
Quincozes-Santos, A., Bobermin, L. D., Tonial, R. P., Bambini-Junior, V., Riesgo, R., and Gottfried, C. (2010). Results of atypical (risperidone) and typical (haloperidol) antipsychotic brokers on astroglial features. Eur. Arch. Psychiatry Clin. Neurosci. 260, 475–481. doi: 10.1007/s00406-009-0095-0
Rao, S. S., and Adlard, P. A. (2018). Untangling Tau and Iron: exploring the interplay between Iron and Tau in neurodegeneration. Entrance. Mol. Neurosci. 11:276. doi: 10.3389/fnmol.2018.00276
Ravi, S., Peña, Okay. A., Chu, C. T., and Kiselyov, Okay. (2016). Biphasic regulation of lysosomal exocytosis by oxidative stress. Cell Calcium. 60, 356–362. doi: 10.1016/j.ceca.2016.08.002
Ripa, R., Dolfi, L., Terrigno, M., Pandolfini, L., Savino, A., Arcucci, V., et al. (2017). MicroRNA miR-29 controls a compensatory response to restrict neuronal iron accumulation throughout grownup life and getting old. BMC Biol. 15:9. doi: 10.1186/s12915-017-0354-x
Rizzollo, F., Extra, S., Vangheluwe, P., and Agostinis, P. (2021). The lysosome as a grasp regulator of iron metabolism. Traits Biochem. Sci. 46, 960–975. doi: 10.1016/j.tibs.2021.07.003
Roederer, M., Ela, S. W., Staal, F. J., Herzenberg, L. A., and Herzenberg, L. A. (1992). N-acetylcysteine: a brand new strategy to anti-HIV remedy. AIDS Res. Hum. Retroviruses 8, 209–217. doi: 10.1089/assist.1992.8.209
Ruan, H., Hao, S., Younger, P., and Zhang, H. (2015). Concentrating on Cathepsin B for most cancers therapies. Horiz Most cancers Res. 56, 23–40.
Ruelas, D. S., and Greene, W. C. (2013). An built-in overview of HIV-1 latency. Cell 155, 519–529. doi: 10.1016/j.cell.2013.09.044
Sakamaki, J. I., Wilkinson, S., Hahn, M., Tasdemir, N., O’Prey, J., Clark, W., et al. (2017). Bromodomain protein BRD4 is a transcriptional repressor of autophagy and lysosomal perform. Mol. Cell. 66, 517.e9–532.e9. doi: 10.1016/j.molcel.2017.04.027
Schneider, J. L., Miller, A. M., and Woesner, M. E. (2016). Autophagy and schizophrenia: a more in-depth take a look at how dysregulation of neuronal cell homeostasis influences the pathogenesis of schizophrenia. Einstein J. Biol. Med. 31, 34–39. doi: 10.23861/EJBM201631752
Schornberg, Okay., Matsuyama, S., Kabsch, Okay., Delos, S., Bouton, A., and White, J. (2006). Function of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J. Virol. 80, 4174–4178. doi: 10.1128/JVI.80.8.4174-4178.2006
Sebastián-Serrano, A., Merchán-Rubira, J., Di Lauro, C., Bianchi, C., Soria-Tobar, L., Narisawa, S., et al. (2022). TNAP upregulation is a important consider Tauopathies and its blockade ameliorates neurotoxicity and will increase life-expectancy. Neurobiol. Dis. 165:105632. doi: 10.1016/j.nbd.2022.105632
Shankaran, P., Madlenakova, M., Hajkova, V., Jilich, D., Svobodova, I., Horinek, A., et al. (2017). Results of heme degradation merchandise on reactivation of latent HIV-1. Acta Virol. 61, 86–96. doi: 10.4149/av_2017_01_86
Sharma, I. (2021). Interrogating the affect of mixture antiretroviral therapies on HIV-associated neurocognitive problems. HIV Med. 22, 783–790. doi: 10.1111/hiv.13142
Shen, Y. T., Gu, Y., Su, W. F., Zhong, J. F., Jin, Z. H., Gu, X. S., et al. (2016). Rab27b is concerned in lysosomal exocytosis and proteolipid protein trafficking in oligodendrocytes. Neurosci. Bull. 32, 331–340. doi: 10.1007/s12264-016-0045-6
Shimizu, S., Khan, M. Z., Hippensteel, R. L., Parkar, A., Raghupathi, R., and Meucci, O. (2007). Function of the transcription issue E2F1 in CXCR4-mediated neurotoxicity and HIV neuropathology. Neurobiol. Dis. 25, 17–26. doi: 10.1016/j.nbd.2006.08.004
Smail, R. C., and Brew, B. J. (2018). HIV-associated neurocognitive dysfunction. Handb. Clin. Neurol. 152, 75–97. doi: 10.1016/B978-0-444-63849-6.00007-4
Track, Q., Meng, B., Xu, H., and Mao, Z. (2020). The rising roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative illnesses. Transl. Neurodegener. 9:17. doi: 10.1186/s40035-020-00196-0
Stolke, D., Weidner, A., and Dietz, H. (1980). Das Verhalten lysosomaler Enzyme des Hirngewebes auf die Narkose unter Ketamine [The effect of ketamine on the lysosomal enzymes of the brain tissue (author’s transl)]. Anasth. Intensivther. Notfallmed. 15, 224–227. doi: 10.1055/s-2007-1005142
PubMed Summary | CrossRef Full Textual content | Google Scholar
Straus, M. R., Bidon, M. Okay., Tang, T., Jaimes, J. A., Whittaker, G. R., and Daniel, S. (2021). Inhibitors of L-Sort calcium channels present therapeutic potential for treating SARS-CoV-2 infections by stopping virus entry and unfold. ACS Infect. Dis. 7, 2807–2815. doi: 10.1021/acsinfecdis.1c00023
Subburayan, Okay., Thayyullathil, F., Pallichankandy, S., Cheratta, A. R., and Galadari, S. (2020). Superoxide-mediated ferroptosis in human most cancers cells induced by sodium selenite. Transl. Oncol. 13:100843. doi: 10.1016/j.tranon.2020.100843
Sui, S., Zhang, J., Xu, S., Wang, Q., Wang, P., and Pang, D. (2019). Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in most cancers cells. Cell Demise Dis. 10:331. doi: 10.1038/s41419-019-1564-7
Solar, Y., Zheng, Y., Wang, C., and Liu, Y. (2018). Glutathione depletion induces ferroptosis, autophagy, and untimely cell senescence in retinal pigment epithelial cells. Cell Demise Dis. 9:753. doi: 10.1038/s41419-018-0794-4
Tanaka, Y., Yamada, Okay., and Satake, Okay. (2019). Seeding activity-based detection uncovers the completely different launch mechanisms of seed-competent tau versus inert tau by way of lysosomal exocytosis. Entrance. Neurosci. 13:1258. doi: 10.3389/fnins.2019.01258
Tang, D., Chen, X., Kang, R., and Kroemer, G. (2021). Ferroptosis: molecular mechanisms and well being implications. Cell Res. 31, 107–125. doi: 10.1038/s41422-020-00441-1
Tang, X., Chen, W., Liu, H., Liu, N., Chen, D., Tian, D., et al. (2022). Analysis progress on SLC7A11 within the regulation of cystine/cysteine metabolism in tumors. Oncol. Lett. 23:47. doi: 10.3892/ol.2021.13165
Tardiolo, G., Bramanti, P., and Mazzon, E. (2018). Overview on the consequences of N-Acetylcysteine in neurodegenerative illnesses. Molecules 23:3305. doi: 10.3390/molecules23123305
Tasdemir, N., Banito, A., Roe, J. S., Alonso-Curbelo, D., Camiolo, M., Tschaharganeh, D. F., et al. (2016). BRD4 connects enhancer transforming to senescence immune surveillance. Most cancers Discov. 6, 612–629. doi: 10.1158/2159-8290.CD-16-0217
Toomey, C. B., Cauvi, D. M., Hamel, J. C., Ramirez, A. E., and Pollard, Okay. M. (2014). Cathepsin B regulates the looks and severity of mercury-induced irritation and autoimmunity. Toxicol. Sci. 142, 339–349. doi: 10.1093/toxsci/kfu189
Tripathi, A., Thangaraj, A., Chivero, E. T., Periyasamy, P., Burkovetskaya, M. E., Niu, F., et al. (2020). N-Acetylcysteine reverses antiretroviral-mediated microglial activation by attenuating autophagy-lysosomal dysfunction. Entrance. Neurol. 11:840. doi: 10.3389/fneur.2020.00840
Tripathi, A., Thangaraj, A., Chivero, E. T., Periyasamy, P., Callen, S., Burkovetskaya, M. E., et al. (2019). Antiretroviral-Mediated microglial activation entails dysregulated autophagy and lysosomal dysfunction. Cells 8:1168. doi: 10.3390/cells8101168
Tripathi, M., Yadav, S., Kumar, V., Kumar, R., Tripathi, M., Gaikwad, S., et al. (2016). HIV encephalitis with subcortical tau deposition: imaging pathology in vivo utilizing F-18 THK 5117. Eur. J. Nucl. Med. Mol. Imaging 43, 2456–2457. doi: 10.1007/s00259-016-3473-7
Tsujimura, A., Taguchi, Okay., Watanabe, Y., Tatebe, H., Tokuda, T., Mizuno, T., et al. (2015). Lysosomal enzyme cathepsin B enhances the mixture forming exercise of exogenous α-synuclein fibrils. Neurobiol. Dis. 73, 244–253. doi: 10.1016/j.nbd.2014.10.011
van Asbeck, B. S., Georgiou, N. A., van der Bruggen, T., Oudshoorn, M., Nottet, H. S., and Marx, J. J. (2001). Anti-HIV impact of iron chelators: completely different mechanisms concerned. J. Clin. Virol. 20, 141–147. doi: 10.1016/s1386-6532(00)00122-0
Varalda, M., Antona, A., and Bettio, V. (2020). Psychotropic medication present anticancer exercise by disrupting mitochondrial and lysosomal perform. Entrance. Oncol. 10:562196. doi: 10.3389/fonc.2020.562196
Vela, J. M. (2020). Repurposing Sigma-1 receptor ligands for COVID-19 remedy? Entrance. Pharmacol. 11:582310. doi: 10.3389/fphar.2020.582310
Veloria, J. R., Li, L., Breen, G. A. M., and Goux, W. J. (2017). Novel cell mannequin for tauopathy induced by a Cell-permeable Tau-related peptide. ACS Chem. Neurosci. 8, 2734–2745. doi: 10.1021/acschemneuro.7b00275
von Bernhardi, R., Eugenín-von Bernhardi, L., and Eugenín, J. (2015). Microglial cell dysregulation in mind getting old and neurodegeneration. Entrance. Ageing Neurosci. 7:124. doi: 10.3389/fnagi.2015.00124
Pockets, C., De Rovere, M., and Van Assche, J. (2019). Microglial cells: the principle HIV-1 reservoir within the mind. Entrance. Cell Infect. Microbiol. 9:362. doi: 10.3389/fcimb.2019.00362
Wan, Y. Q., Feng, J. G., Li, M., Wang, M. Z., Liu, L., Liu, X., et al. (2018). Prefrontal cortex miR-29b-3p performs a key position within the antidepressant-like impact of ketamine in rats. Exp. Mol. Med. 50, 1–14. doi: 10.1038/s12276-018-0164-4
Wang, J., Li, G. L., Ming, S. L., Wang, C. F., Shi, L. J., Su, B. Q., et al. (2020). BRD4 inhibition exerts anti-viral exercise by means of DNA damage-dependent innate immune responses. PLoS Pathog. 16:e1008429. doi: 10.1371/journal.ppat.1008429
Wang, M. P., Joshua, B., Jin, N. Y., Du, S. W., and Li, C. (2021). Ferroptosis in viral an infection: the unexplored chance. Acta Pharmacol. Sin. [Online ahead of print], doi: 10.1038/s41401-021-00814-1
Wang, S., Jiang, Y., Liu, Y., Liu, Q., Solar, H., Mei, M., et al. (2022). Ferroptosis promotes microtubule-associated protein tau aggregation by way of GSK-3β activation and proteasome inhibition. Mol. Neurobiol. 59, 1486–1501. doi: 10.1007/s12035-022-02731-8
Weiss, A., Touret, F., Baronti, C., Gilles, M., Hoen, B., Nougairède, A., et al. (2021). Niclosamide reveals robust antiviral exercise in a human airway mannequin of SARS-CoV-2 an infection and a conserved efficiency in opposition to the Alpha (B.1.1.7), Beta (B.1.351) and Delta variant (B.1.617.2). PLoS One 16:e0260958. doi: 10.1371/journal.pone.0260958
Whitton, B., Okamoto, H., Packham, G., and Crabb, S. J. (2018). Vacuolar ATPase as a possible therapeutic goal and mediator of remedy resistance in most cancers. Most cancers Med. 7, 3800–3811. doi: 10.1002/cam4.1594
Xu, X., Mann, M., Qiao, D., Li, Y., Zhou, J., and Brasier, A. R. (2021). Bromodomain containing protein 4 (BRD4) regulates expression of its interacting coactivators within the innate response to respiratory syncytial virus. Entrance. Mol. Biosci. 8:728661. doi: 10.3389/fmolb.2021.728661
Xu, Y., Du, S., Marsh, J. A., Horie, Okay., Sato, C., Ballabio, A., et al. (2021). TFEB regulates lysosomal exocytosis of tau and its lack of perform exacerbates tau pathology and spreading. Mol. Psychiatry 26, 5925–5939. doi: 10.1038/s41380-020-0738-0
Yambire, Okay. F., Rostosky, C., Watanabe, T., Pacheu-Grau, D., Torres-Odio, S., Sanchez-Guerrero, A., et al. (2019). Impaired lysosomal acidification triggers iron deficiency and irritation in vivo. Elife 8:e51031. doi: 10.7554/eLife.51031
Yang, M., and Lai, C. L. (2020). SARS-CoV-2 an infection: can ferroptosis be a possible remedy goal for a number of organ involvement? Cell Demise Discov. 6:130. doi: 10.1038/s41420-020-00369-w
Yim, Y., Choi, J. D., Cho, J. H., Moon, Y., Han, S. H., and Moon, W. J. (2022). Magnetic susceptibility within the deep grey matter could also be modulated by apolipoprotein E4 and age with regional predilections: a quantitative susceptibility mapping examine. Neuroradiology [Online ahead of print], doi: 10.1007/s00234-021-02859-9
Zenón-Meléndez, C. N., Carrasquillo Carrión, Okay., Cantres Rosario, Y., Roche Lima, A., and Meléndez, L. M. (2022). Inhibition of Cathepsin B and SAPC secreted by HIV-infected macrophages reverses widespread and distinctive apoptosis pathways. J. Proteome Res. 21, 301–312. doi: 10.1021/acs.jproteome.1c00187
Zhang, S., Bai, P., Lei, D., Liang, Y., Zhen, S., Bakiasi, G., et al. (2022). Degradation and inhibition of epigenetic regulatory protein BRD4 exacerbate Alzheimer’s disease-related neuropathology in cell fashions. J. Biol. Chem. 298:101794.
Zhao, T., Yang, Q., Xi, Y., Xie, Z., Shen, J., Li, Z., et al. (2022). Ferroptosis in rheumatoid arthritis: a possible therapeutic technique. Entrance. Immunol. 13:779585. doi: 10.3389/fimmu.2022.779585