Samstag, Mai 21, 2022
StartHealth ScienceGefitinib and fostamatinib goal EGFR and SYK to attenuate silicosis: a multi-omics...

Gefitinib and fostamatinib goal EGFR and SYK to attenuate silicosis: a multi-omics examine with drug exploration


  • Leung, C. C., Yu, I. T. S. & Chen, W. Silicosis. Lancet 379, 2008–2018 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hoy, R. F. & Chambers, D. C. Silica-related ailments within the fashionable world. Allergy 75, 2805–2817 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Wollin, L. et al. Potential of nintedanib in therapy of progressive fibrosing interstitial lung ailments. Eur Respir J. 54, 1900161 (2019).

  • Lopes-Pacheco, M., Bandeira, E. & Morales, M. M. Cell-based remedy for silicosis. Stem Cells Int. 2016, 5091838 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wagner, G. R. Asbestosis and silicosis. Lancet 349, 1311–1315 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fubini, B. & Hubbard, A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) era by silica in irritation and fibrosis. Free Radic. Biol. Med. 34, 1507–1516 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chong, S. et al. Pneumoconiosis: comparability of imaging and pathologic findings. Radiographics 26, 59–77 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Huaux, F. New developments within the understanding of immunology in silicosis. Curr. Opin. Allergy Clin. Immunol. 7, 168–173 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Di Giuseppe, M. et al. Systemic inhibition of NF-kappaB activation protects from silicosis. PLoS ONE 4, e5689 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mossman, B. T. & Churg, A. Mechanisms within the pathogenesis of asbestosis and silicosis. Am. J. Respir. Crit. Care Med. 157, 1666–1680 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pollard, Ok. M. Silica, silicosis, and autoimmunity. Entrance. Immunol. 7, 97 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bai, J. P. F., Melas, I. N., Hur, J. & Guo, E. Advances in omics for knowledgeable pharmaceutical analysis and growth within the period of programs drugs. Knowledgeable Opin. Drug Discov. 13, 1–4 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Yokota, H. Functions of proteomics in pharmaceutical analysis and growth. Biochim Biophys. Acta Proteins Proteom. 1867, 17–21 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yan, S.-Ok. et al. “Omics” in pharmaceutical analysis: overview, functions, challenges, and future views. Chin. J. Nat. Med. 13, 3–21 (2015).

  • Li, C.-X., Wheelock, C. E., Sköld, C. M. & Wheelock, Å. M. Integration of multi-omics datasets allows molecular classification of COPD. Eur. Respir. J. 51, 1701930 (2018).

  • Winslow, S. et al. Multi-omics hyperlinks IL-6 trans-signalling with neutrophil extracellular lure formation and an infection in COPD. Eur. Respir. J. 58, 2003312 (2021).

  • Christenson, S. & Hersh, C. P. Present in translation: multi-omics evaluation of the power obstructive pulmonary disease-lung most cancers interplay. Am. J. Respir. Crit. Care Med. 200, 276–277 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kropski, J. A. & Blackwell, T. S. Progress in understanding and treating idiopathic pulmonary fibrosis. Annu Rev. Med. 70, 211–224 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pang, J. et al. Multi-omics examine of silicosis reveals the potential therapeutic targets PGD and TXA. Theranostics 11, 2381–2394 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Na, M. et al. Proteomic profile of TGF-β1 handled lung fibroblasts identifies novel markers of activated fibroblasts within the silica uncovered rat lung. Exp. Cell Res. 375, 1–9 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grimminger, F., Günther, A. & Vancheri, C. The position of tyrosine kinases within the pathogenesis of idiopathic pulmonary fibrosis. Eur. Respir. J. 45, 1426–1433 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cao, Z. et al. A novel pathophysiological classification of silicosis fashions gives some new insights into the development of the illness. Ecotoxicol. Environ. Saf. 202, 110834 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krzywinski, M. I. et al. Circos: an data aesthetic for comparative genomics. Genome Res. 19, 1639–645 (2009).

  • Stolarczyk, M. & Scholte, B. J. The EGFR-ADAM17 axis in power obstructive pulmonary illness and cystic fibrosis lung pathology. Mediators Inflamm. 2018, 1067134 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Korfhagen, T. R. et al. Rapamycin prevents reworking progress factor-alpha-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 41, 562–572 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fang, X. et al. Function of hepatic deposited immunoglobulin g within the pathogenesis of liver injury in systemic lupus erythematosus. Entrance. Immunol. 9, 1457 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wishart, D. S. et al. DrugBank: a complete useful resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roskoski, R. Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 replace. Pharmacol. Res. 152, 104609 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fukuoka, M. et al. Multi-institutional randomized section II trial of gefitinib for beforehand handled sufferers with superior non-small-cell lung most cancers (The IDEAL 1 Trial) [corrected]. J. Clin. Oncol. 21, 2237–2246 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kris, M. G. et al. Efficacy of gefitinib, an inhibitor of the epidermal progress issue receptor tyrosine kinase, in symptomatic sufferers with non-small cell lung most cancers: a randomized trial. JAMA 290, 2149–2158 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, C. et al. Results of gefitinib on radiation-induced lung harm in mice. J. Nippon Med. Sch. 75, 96–105 (2008).

  • Ishii, Y., Fujimoto, S. & Fukuda, T. Gefitinib prevents bleomycin-induced lung fibrosis in mice. Am. J. Respir. Crit. Care Med. 174, 550–556 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roskoski, R. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res. 144, 19–50 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Strich, J. R. et al. Fostamatinib inhibits neutrophils extracellular traps induced by COVID-19 affected person plasma: a possible therapeutic. J. Infect. Dis. 223, 981–984 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pamuk, O. N. et al. Spleen tyrosine kinase (Syk) inhibitor fostamatinib limits tissue injury and fibrosis in a bleomycin-induced scleroderma mouse mannequin. Clin. Exp. Rheumatol. 33, S15–S22 (2015).

    PubMed 

    Google Scholar
     

  • Ma, T. Ok.-W., McAdoo, S. P. & Tam, F. W.-Ok. Spleen tyrosine kinase: a vital participant and potential therapeutic goal in renal illness. Nephron 133, 261–269 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Le Huu, D. et al. Blockade of Syk ameliorates the event of murine sclerodermatous power graft-versus-host illness. J. Dermatol. Sci. 74, 214–221 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Suzuki, H., Aoshiba, Ok., Yokohori, N. & Nagai, A. Epidermal progress issue receptor tyrosine kinase inhibition augments a murine mannequin of pulmonary fibrosis. Most cancers Res. 63, 5054–5059 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Y. et al. Immunotoxicity evaluation for the novel Spleen tyrosine kinase inhibitor R406. Toxicol. Appl. Pharmacol. 221, 268–277 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stenton, G. R. et al. Aerosolized Syk antisense suppresses Syk expression, mediator launch from macrophages, and pulmonary irritation. J. Immunol. 164, 3790–3797 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Haberzettl, P. et al. Influence of the FcgammaII-receptor on quartz uptake and inflammatory response by alveolar macrophages. Am. J. Physiol. Lung Cell Mol. Physiol. 294, L1137–L1148 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Banks, D. E., Cheng, Y. H., Weber, S. L. & Ma, J. Ok. Methods for the therapy of pneumoconiosis. Occup. Med. 8, 205–232 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Q.-M., Tang, H.-F., Chen, J.-Q. & Bian, R.-L. Pharmacological actions of tetrandrine in inflammatory pulmonary ailments. Acta Pharmacol. Sin. 23, 1107–1113 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Pang, J. et al. Comparative transcriptome analyses reveal a transcriptional panorama of human silicosis lungs and supply potential methods for silicosis therapy. Entrance. Genet. 12, 652901 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deshmukh, H. S. et al. Metalloproteinases mediate mucin 5AC expression by epidermal progress issue receptor activation. Am. J. Respir. Crit. Care Med. 171, 305–314 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Cortijo, J. et al. Aclidinium inhibits cholinergic and tobacco smoke-induced MUC5AC in human airways. Eur. Respir. J. 37, 244–254 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Adamson, I. Y., Younger, L. & Bowden, D. H. Relationship of alveolar epithelial harm and restore to the induction of pulmonary fibrosis. Am. J. Pathol. 130, 377–383 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selman, M., King, T. E. & Pardo, A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for remedy. Ann. Intern Med. 134, 136–151 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Forsythe, B. & Faulkner, Ok. Overview of the tolerability of gefitinib (IRESSA) monotherapy: medical expertise in non-small-cell lung most cancers. Drug Saf. 27, 1081–1092 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, N. et al. Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis. J. Am. Soc. Nephrol. 23, 854–867 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shah, S. et al. EGFR tyrosine kinase inhibition decreases cardiac reworking and SERCA2a/NCX1 depletion in streptozotocin induced cardiomyopathy in C57/BL6 mice. Life Sci. 210, 29–39 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, Ok.-H. et al. Spleen Tyrosine Kinase (SYK) within the development of peritoneal fibrosis by activation of the TGF-β1/Smad3 signaling pathway. Med. Sci. Monit. 25, 9346–9356 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kawanami, O. et al. Alveolar fibrosis and capillary alteration in experimental pulmonary silicosis in rats. Am. J. Respir. Crit. Care Med. 151, 1946–1955 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hamilton, R. F., Thakur, S. A. & Holian, A. Silica binding and toxicity in alveolar macrophages. Free Radic. Biol. Med. 44, 1246–1258 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wollin, L. et al. Antifibrotic and anti inflammatory exercise of the tyrosine kinase inhibitor nintedanib in experimental fashions of lung fibrosis. J. Pharmacol. Exp. Ther. 349, 209–220 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Namba, T. et al. Suppression of expression of warmth shock protein 70 by gefitinib and its contribution to pulmonary fibrosis. PLoS ONE 6, e27296 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Inoue, A. et al. Extreme acute interstitial pneumonia and gefitinib. Lancet 361, 137–139 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Lynch, T. J. et al. Activating mutations within the epidermal progress issue receptor underlying responsiveness of non-small-cell lung most cancers to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paez, J. G. et al. EGFR mutations in lung most cancers: correlation with medical response to gefitinib remedy. Science 304, 1497–1500 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Park, Ok. et al. Afatinib versus gefitinib as first-line therapy of sufferers with EGFR mutation-positive non-small-cell lung most cancers (LUX-Lung 7): a section 2B, open-label, randomised managed trial. Lancet Oncol. 17, 577–589 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, J. et al. The position of fibrocyte within the pathogenesis of silicosis. Biomed. Environ. Sci. 31, 311–316 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Silica particles disorganize the polarization of pulmonary macrophages in mice. Ecotoxicol. Environ. Saf. 193, 110364 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a quick spliced aligner with low reminiscence necessities. Nat. Strategies 12, 357–360 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lawrence, M. et al. Software program for computing and annotating genomic ranges. PLoS Comput Biol. 9, e1003118 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based method for decoding genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma, J. et al. iProX: an built-in proteome useful resource. Nucleic Acids Res. 47, D1211–D1217 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments