Leung, C. C., Yu, I. T. S. & Chen, W. Silicosis. Lancet 379, 2008–2018 (2012).
Hoy, R. F. & Chambers, D. C. Silica-related ailments within the fashionable world. Allergy 75, 2805–2817 (2020).
Wollin, L. et al. Potential of nintedanib in therapy of progressive fibrosing interstitial lung ailments. Eur Respir J. 54, 1900161 (2019).
Lopes-Pacheco, M., Bandeira, E. & Morales, M. M. Cell-based remedy for silicosis. Stem Cells Int. 2016, 5091838 (2016).
Wagner, G. R. Asbestosis and silicosis. Lancet 349, 1311–1315 (1997).
Fubini, B. & Hubbard, A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) era by silica in irritation and fibrosis. Free Radic. Biol. Med. 34, 1507–1516 (2003).
Chong, S. et al. Pneumoconiosis: comparability of imaging and pathologic findings. Radiographics 26, 59–77 (2006).
Huaux, F. New developments within the understanding of immunology in silicosis. Curr. Opin. Allergy Clin. Immunol. 7, 168–173 (2007).
Di Giuseppe, M. et al. Systemic inhibition of NF-kappaB activation protects from silicosis. PLoS ONE 4, e5689 (2009).
Mossman, B. T. & Churg, A. Mechanisms within the pathogenesis of asbestosis and silicosis. Am. J. Respir. Crit. Care Med. 157, 1666–1680 (1998).
Pollard, Ok. M. Silica, silicosis, and autoimmunity. Entrance. Immunol. 7, 97 (2016).
Bai, J. P. F., Melas, I. N., Hur, J. & Guo, E. Advances in omics for knowledgeable pharmaceutical analysis and growth within the period of programs drugs. Knowledgeable Opin. Drug Discov. 13, 1–4 (2018).
Yokota, H. Functions of proteomics in pharmaceutical analysis and growth. Biochim Biophys. Acta Proteins Proteom. 1867, 17–21 (2019).
Yan, S.-Ok. et al. “Omics” in pharmaceutical analysis: overview, functions, challenges, and future views. Chin. J. Nat. Med. 13, 3–21 (2015).
Li, C.-X., Wheelock, C. E., Sköld, C. M. & Wheelock, Å. M. Integration of multi-omics datasets allows molecular classification of COPD. Eur. Respir. J. 51, 1701930 (2018).
Winslow, S. et al. Multi-omics hyperlinks IL-6 trans-signalling with neutrophil extracellular lure formation and an infection in COPD. Eur. Respir. J. 58, 2003312 (2021).
Christenson, S. & Hersh, C. P. Present in translation: multi-omics evaluation of the power obstructive pulmonary disease-lung most cancers interplay. Am. J. Respir. Crit. Care Med. 200, 276–277 (2019).
Kropski, J. A. & Blackwell, T. S. Progress in understanding and treating idiopathic pulmonary fibrosis. Annu Rev. Med. 70, 211–224 (2019).
Pang, J. et al. Multi-omics examine of silicosis reveals the potential therapeutic targets PGD and TXA. Theranostics 11, 2381–2394 (2021).
Na, M. et al. Proteomic profile of TGF-β1 handled lung fibroblasts identifies novel markers of activated fibroblasts within the silica uncovered rat lung. Exp. Cell Res. 375, 1–9 (2019).
Grimminger, F., Günther, A. & Vancheri, C. The position of tyrosine kinases within the pathogenesis of idiopathic pulmonary fibrosis. Eur. Respir. J. 45, 1426–1433 (2015).
Cao, Z. et al. A novel pathophysiological classification of silicosis fashions gives some new insights into the development of the illness. Ecotoxicol. Environ. Saf. 202, 110834 (2020).
Krzywinski, M. I. et al. Circos: an data aesthetic for comparative genomics. Genome Res. 19, 1639–645 (2009).
Stolarczyk, M. & Scholte, B. J. The EGFR-ADAM17 axis in power obstructive pulmonary illness and cystic fibrosis lung pathology. Mediators Inflamm. 2018, 1067134 (2018).
Korfhagen, T. R. et al. Rapamycin prevents reworking progress factor-alpha-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 41, 562–572 (2009).
Fang, X. et al. Function of hepatic deposited immunoglobulin g within the pathogenesis of liver injury in systemic lupus erythematosus. Entrance. Immunol. 9, 1457 (2018).
Wishart, D. S. et al. DrugBank: a complete useful resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006).
Roskoski, R. Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 replace. Pharmacol. Res. 152, 104609 (2020).
Fukuoka, M. et al. Multi-institutional randomized section II trial of gefitinib for beforehand handled sufferers with superior non-small-cell lung most cancers (The IDEAL 1 Trial) [corrected]. J. Clin. Oncol. 21, 2237–2246 (2003).
Kris, M. G. et al. Efficacy of gefitinib, an inhibitor of the epidermal progress issue receptor tyrosine kinase, in symptomatic sufferers with non-small cell lung most cancers: a randomized trial. JAMA 290, 2149–2158 (2003).
Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).
Wang, C. et al. Results of gefitinib on radiation-induced lung harm in mice. J. Nippon Med. Sch. 75, 96–105 (2008).
Ishii, Y., Fujimoto, S. & Fukuda, T. Gefitinib prevents bleomycin-induced lung fibrosis in mice. Am. J. Respir. Crit. Care Med. 174, 550–556 (2006).
Roskoski, R. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res. 144, 19–50 (2019).
Strich, J. R. et al. Fostamatinib inhibits neutrophils extracellular traps induced by COVID-19 affected person plasma: a possible therapeutic. J. Infect. Dis. 223, 981–984 (2021).
Pamuk, O. N. et al. Spleen tyrosine kinase (Syk) inhibitor fostamatinib limits tissue injury and fibrosis in a bleomycin-induced scleroderma mouse mannequin. Clin. Exp. Rheumatol. 33, S15–S22 (2015).
Ma, T. Ok.-W., McAdoo, S. P. & Tam, F. W.-Ok. Spleen tyrosine kinase: a vital participant and potential therapeutic goal in renal illness. Nephron 133, 261–269 (2016).
Le Huu, D. et al. Blockade of Syk ameliorates the event of murine sclerodermatous power graft-versus-host illness. J. Dermatol. Sci. 74, 214–221 (2014).
Suzuki, H., Aoshiba, Ok., Yokohori, N. & Nagai, A. Epidermal progress issue receptor tyrosine kinase inhibition augments a murine mannequin of pulmonary fibrosis. Most cancers Res. 63, 5054–5059 (2003).
Zhu, Y. et al. Immunotoxicity evaluation for the novel Spleen tyrosine kinase inhibitor R406. Toxicol. Appl. Pharmacol. 221, 268–277 (2007).
Stenton, G. R. et al. Aerosolized Syk antisense suppresses Syk expression, mediator launch from macrophages, and pulmonary irritation. J. Immunol. 164, 3790–3797 (2000).
Haberzettl, P. et al. Influence of the FcgammaII-receptor on quartz uptake and inflammatory response by alveolar macrophages. Am. J. Physiol. Lung Cell Mol. Physiol. 294, L1137–L1148 (2008).
Banks, D. E., Cheng, Y. H., Weber, S. L. & Ma, J. Ok. Methods for the therapy of pneumoconiosis. Occup. Med. 8, 205–232 (1993).
Xie, Q.-M., Tang, H.-F., Chen, J.-Q. & Bian, R.-L. Pharmacological actions of tetrandrine in inflammatory pulmonary ailments. Acta Pharmacol. Sin. 23, 1107–1113 (2002).
Pang, J. et al. Comparative transcriptome analyses reveal a transcriptional panorama of human silicosis lungs and supply potential methods for silicosis therapy. Entrance. Genet. 12, 652901 (2021).
Deshmukh, H. S. et al. Metalloproteinases mediate mucin 5AC expression by epidermal progress issue receptor activation. Am. J. Respir. Crit. Care Med. 171, 305–314 (2005).
Cortijo, J. et al. Aclidinium inhibits cholinergic and tobacco smoke-induced MUC5AC in human airways. Eur. Respir. J. 37, 244–254 (2011).
Adamson, I. Y., Younger, L. & Bowden, D. H. Relationship of alveolar epithelial harm and restore to the induction of pulmonary fibrosis. Am. J. Pathol. 130, 377–383 (1988).
Selman, M., King, T. E. & Pardo, A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for remedy. Ann. Intern Med. 134, 136–151 (2001).
Forsythe, B. & Faulkner, Ok. Overview of the tolerability of gefitinib (IRESSA) monotherapy: medical expertise in non-small-cell lung most cancers. Drug Saf. 27, 1081–1092 (2004).
Liu, N. et al. Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis. J. Am. Soc. Nephrol. 23, 854–867 (2012).
Shah, S. et al. EGFR tyrosine kinase inhibition decreases cardiac reworking and SERCA2a/NCX1 depletion in streptozotocin induced cardiomyopathy in C57/BL6 mice. Life Sci. 210, 29–39 (2018).
Liu, Ok.-H. et al. Spleen Tyrosine Kinase (SYK) within the development of peritoneal fibrosis by activation of the TGF-β1/Smad3 signaling pathway. Med. Sci. Monit. 25, 9346–9356 (2019).
Kawanami, O. et al. Alveolar fibrosis and capillary alteration in experimental pulmonary silicosis in rats. Am. J. Respir. Crit. Care Med. 151, 1946–1955 (1995).
Hamilton, R. F., Thakur, S. A. & Holian, A. Silica binding and toxicity in alveolar macrophages. Free Radic. Biol. Med. 44, 1246–1258 (2008).
Wollin, L. et al. Antifibrotic and anti inflammatory exercise of the tyrosine kinase inhibitor nintedanib in experimental fashions of lung fibrosis. J. Pharmacol. Exp. Ther. 349, 209–220 (2014).
Namba, T. et al. Suppression of expression of warmth shock protein 70 by gefitinib and its contribution to pulmonary fibrosis. PLoS ONE 6, e27296 (2011).
Inoue, A. et al. Extreme acute interstitial pneumonia and gefitinib. Lancet 361, 137–139 (2003).
Lynch, T. J. et al. Activating mutations within the epidermal progress issue receptor underlying responsiveness of non-small-cell lung most cancers to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).
Paez, J. G. et al. EGFR mutations in lung most cancers: correlation with medical response to gefitinib remedy. Science 304, 1497–1500 (2004).
Park, Ok. et al. Afatinib versus gefitinib as first-line therapy of sufferers with EGFR mutation-positive non-small-cell lung most cancers (LUX-Lung 7): a section 2B, open-label, randomised managed trial. Lancet Oncol. 17, 577–589 (2016).
Li, J. et al. The position of fibrocyte within the pathogenesis of silicosis. Biomed. Environ. Sci. 31, 311–316 (2018).
Zhao, Y. et al. Silica particles disorganize the polarization of pulmonary macrophages in mice. Ecotoxicol. Environ. Saf. 193, 110364 (2020).
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a quick spliced aligner with low reminiscence necessities. Nat. Strategies 12, 357–360 (2015).
Lawrence, M. et al. Software program for computing and annotating genomic ranges. PLoS Comput Biol. 9, e1003118 (2013).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550 (2014).
Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based method for decoding genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
Ma, J. et al. iProX: an built-in proteome useful resource. Nucleic Acids Res. 47, D1211–D1217 (2019).