Katiyar, A. et al. Genomic profiling of antimicrobial resistance genes in medical isolates of Salmonella typhi from sufferers contaminated with typhoid fever in India. Sci. Rep. 10, 8299 (2020).
Nordmann, P. & Poirel, L. Epidemiology and diagnostics of carbapenem resistance in Gram-negative micro organism. Clin. Infect. Dis. 69, S521–S528 (2019).
Manandhar, S. et al. A excessive prevalence of multi-drug resistant Gram-negative bacilli in a Nepali tertiary care hospital and related widespread distribution of Prolonged-Spectrum Beta-Lactamase (ESBL) and carbapenemase-encoding genes. Ann. Clin. Microbiol. Antimicrob. 19, 48 (2020).
Wyres, Ok. L. et al. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia. Genome Med. 12, 11 (2020).
World Well being Group. Pointers for the Prevention and Management of Carbapenem-Resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in Well being Care Services (WHO, 2017).
Zavascki, A. P., Bulitta, J. B. & Landersdorfer, C. B. Mixture remedy for carbapenem-resistant Gram-negative micro organism. Knowledgeable Rev. Anti. Infect. Ther. 11, 1333–1353 (2013).
Karampatakis, T. et al. Molecular epidemiology of endemic carbapenem-resistant Gram-negative micro organism in an intensive care unit. Microb. Drug Resist. 25, 712–716 (2018).
Nair, S. et al. ESBL-producing strains remoted from imported instances of enteric fever in England and Wales reveal a number of chromosomal integrations of blaCTX-M-15 in XDR Salmonella Typhi. J. Antimicrob. Chemother. 76, 1459–1466 (2021).
Zagui, G. S. et al. Gram-negative micro organism carrying β-lactamase encoding genes in hospital and concrete wastewater in Brazil. Environ. Monit. Assess. 192, 376 (2020).
Elbadawi, H. S. et al. Detection and characterization of carbapenem resistant Gram unfavorable bacilli isolates recovered from hospitalized sufferers at Soba College Hospital, Sudan. BMC Microbiol. 21, 136 (2021).
Sawa, T., Kooguchi, Ok. & Moriyama, Ok. Molecular variety of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J. Intensive Care 8, 13 (2020).
Medical and Laboratory Requirements Institute. Efficiency Requirements for Antimicrobial Susceptibility Testing: 22th Informational Complement (CLSI, 2012).
Altoparlak, U., Aktas, F., Celebi, D., Ozkurt, Z. & Akcay, M. N. Prevalence of metallo-beta-lactamase amongst Pseudomonas aeruginosa and Acinetobacter baumannii remoted from burn wounds and in vitro actions of antibiotic combos in opposition to these isolates. Burns 31(6), 707–710 (2005).
Music, W. et al. Detection of prolonged spectrum β-lactamases through the use of boronic-acid as an AmpC β-lactamase inhibitor in medical isolates of Klebsiella spp. and Escherichia coli. J. Clin. Microbiol. 45, 1180–84 (2007).
Lee, Ok. et al. Modified Hodge and EDTA-disk synergy checks to display screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobactet species. Clin. Microbiol. Infect. 7, 88–91 (2001).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A versatile trimmer for Illumina sequence knowledge. Bioinformatics 30, 2114–2120 (2014).
Zerbino, D. R. & Birney, E. Velvet: Algorithms for de novo brief learn meeting utilizing de Bruijn graphs. Genome Res. 18, 821–829 (2008).
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: High quality evaluation device for genome assemblies. Bioinformatics 29, 1072–1075. https://doi.org/10.1093/bioinformatics/btt086 (2013).
Seemann, T. Prokka: Speedy prokaryotic genome annotation. Bioinformatics 30, 2068–2069. https://doi.org/10.1093/bioinformatics/btu153 (2014).
Meletis, G. Carbapenem resistance: Overview of the issue and future views. Ther. Adv. Infect. Dis. 3, 15–21 (2015).
Sands, Ok. et al. Characterization of antimicrobial-resistant Gram-negative micro organism that trigger neonatal sepsis in seven low- and middle-income nations. Nat. Microbiol. 6, 512–523 (2021).
Fonseca, F. et al. The idea for carbapenem hydrolysis by class A β-lactamases: A mixed investigation utilizing crystallography and simulations. J. Am. Chem. Soc. 134, 18275–18285 (2012).
Satyajeet, Ok. et al. Carbapenem–resistant Enterobacteriaceae : Prevalence and bacteriological profile in a tertiary instructing hospital from rural western India. Indian J. Microbiol. Res. 2020, 7400 (2020).
Wattal, C. et al. Impression of informational suggestions to clinicians on antibiotic-prescribing charges in a tertiary care hospital in Delhi. Indian J. Med. Microbiol. 33, 255–259 (2015).
Gupta, R., Malik, A., Rizvi, M. & Ahmed, M. Presence of metallo-beta-lactamases (MBL), extended-spectrum beta-lactamase (ESBL) & AmpC optimistic non-fermenting Gram-negative bacilli amongst Intensive Care Unit sufferers with particular reference to molecular detection of bla(CTX-M) & bla(AmpC) genes. Indian J. Med. Res. 144, 271–275 (2016).
Rohit, A. et al. CTX-M kind extended-spectrum & #946;-lactamase in Escherichia coli remoted from extra-intestinal infections in a tertiary care hospital in south India. Indian J. Med. Res. 149, 281–284 (2019).
Muzaheed, et al. Excessive prevalence of CTX-M-15-producing Klebsiella pneumoniae amongst inpatients and outpatients with urinary tract an infection in Southern India. J. Antimicrob. Chemother. 61, 1393–1394 (2008).
Devi, L. et al. Rising prevalence of Escherichia coli and Klebsiella pneumoniae producing CTX-M-type extended-spectrum beta-lactamase, carbapenemase, and NDM-1 in sufferers from a rural neighborhood with neighborhood acquired infections: A 3-year examine. Int. J. Appl. Primary Med. Res. 10, 156–163 (2020).
Khan, E. R. et al. Prevalence and molecular epidemiology of medical isolates of Escherichia coli and Klebsiella pneumoniae harboring extended-spectrum beta-lactamase and carbapenemase genes in Bangladesh. Microb. Drug Resist. 24, 1568–1579 (2018).
Rocha, F. R., Pinto, V. P. T. & Barbosa, F. C. B. The unfold of CTX-M-type extended-spectrum β-lactamases in Brazil: A scientific assessment. Microb. Drug Resist. 22, 301–311 (2015).
Xia, S. et al. Dominance of CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli remoted from sufferers with community-onset and hospital-onset an infection in China. PLoS ONE 9, e100707–e100707 (2014).
Abrar, S. et al. Distribution of blaCTX − M, blaTEM, blaSHV and blaOXA genes in extended-spectrum-β-lactamase-producing medical isolates: A 3-year multi-center examine from Lahore, Pakistan. Antimicrob. Resist. Infect. Management 8, 80 (2019).
Zeynudin, A. et al. Prevalence and antibiotic susceptibility sample of CTX-M kind extended-spectrum β-lactamases amongst medical isolates of gram-negative bacilli in Jimma, Ethiopia. BMC Infect. Dis. 18, 524 (2018).
Yuki, S. et al. Environmental presence and genetic traits of carbapenemase-producing enterobacteriaceae from hospital sewage and river water within the Philippines. Appl. Environ. Microbiol. 86, e01906-e1919 (2021).
Marie-Frédérique, L. et al. Prolonged-spectrum β-lactamases of the CTX-M kind now in Switzerland. Antimicrob. Brokers Chemother. 51, 2855–2860 (2007).
Quinteros, M. et al. Prolonged-Spectrum β-lactamases in enterobacteriaceae in Buenos Aires, Argentina, Public Hospitals. Antimicrob. Brokers Chemother. 47, 2864–2867 (2003).
Al Naiemi, N. et al. Extensively distributed and predominant CTX-M extended-spectrum β-lactamases in Amsterdam, The Netherlands. J. Clin. Microbiol. 44, 3012–3014 (2006).
Zhao, W.-H. & Hu, Z.-Q. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative micro organism. Crit. Rev. Microbiol. 39, 79–101 (2013).
Pokhrel, R. H., Thapa, B., Kafle, R., Shah, P. Ok. & Tribuddharat, C. Co-existence of beta-lactamases in medical isolates of Escherichia coli from Kathmandu, Nepal. BMC Res. Notes 7, 694 (2014).
Laurent, P., de la Ortiz, R.J.-M., Anaïs, R., Marta, A.-S. & Patrice, N. CTX-M-33 Is a CTX-M-15 by-product conferring lowered susceptibility to carbapenems. Antimicrob. Brokers Chemother. 63, e01515-19 (2021).
Walsh, T. R. Rising carbapenemases: A worldwide perspective. Int. J. Antimicrob. Brokers 36, S8–S14 (2010).
Nachimuthu, R. et al. Characterization of carbapenem-resistant Gram-negative micro organism from Tamil Nadu. J. Chemother. 28, 371–374 (2016).
Kazi, M. et al. Molecular characterization of carbapenem-resistant Enterobacteriaceae at a tertiary care laboratory in Mumbai. Eur. J. Clin. Microbiol. Infect. Dis. 34, 467–472 (2015).
Okoche, D., Asiimwe, B. B., Katabazi, F. A., Kato, L. & Najjuka, C. F. Prevalence and characterization of carbapenem-resistant enterobacteriaceae remoted from Mulago Nationwide Referral Hospital, Uganda. PLoS ONE 10, e0135745 (2015).
Mushi, M. F., Mshana, S. E., Imirzalioglu, C. & Bwanga, F. Carbapenemase genes amongst multidrug resistant gram unfavorable medical isolates from a Tertiary Hospital in Mwanza, Tanzania. Biomed Res. Int. 2014, 303104 (2014).
Hornsey, M., Phee, L. & Wareham, D. W. A novel variant, NDM-5, of the New Delhi metallo-β-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a affected person in the UK. Antimicrob. Brokers Chemother. 55, 5952–5954 (2011).
Liang, W. et al. Emergence and mechanism of carbapenem-resistant Escherichia coli in Henan, China, 2014. J. Infect. Public Well being 11, 347–351 (2018).
Kopotsa, Ok., Sekyere, J. O. & Mbelle, N. Characterization of plasmids mediating carbapenem-resistance in Klebsiella pneumoniae in Pretoria, South Africa. Int. J. Infect. Dis. 101, 14 (2020).
Mmatli, M., Mbelle, N. M., Maningi, N. E. & Osei Sekyere, J. Rising transcriptional and genomic mechanisms mediating carbapenem and polymyxin resistance in enterobacteriaceae: A scientific assessment of present experiences. mSystems 5, e007830 (2020).
Rawat, D. & Nair, D. Prolonged-spectrum & #223;-lactamases in gram unfavorable micro organism. J. Glob. Infect. Dis. 2, 263–274 (2010).
Truthful, R. J. & Tor, Y. Antibiotics and bacterial resistance within the twenty first century. Perspect. Med. Chem. 6, 25–64 (2014).