Sonntag, Juli 31, 2022
StartMicrobiologyGenomic, morphological, and biochemical analyses of a multi-metal resistant however multi-drug inclined...

Genomic, morphological, and biochemical analyses of a multi-metal resistant however multi-drug inclined pressure of Bordetella petrii from hospital soil


  • Khan, N. A. et al. Incidence, sources and traditional remedy strategies for numerous antibiotics current in hospital wastewaters: a essential evaluate. TrAC, Traits Anal. Chem. 129, 115921 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Almagor, J., Temkin, E., Benenson, I., Fallach, N. & Carmeli, Y. The impression of antibiotic use on transmission of resistant micro organism in hospitals: Insights from an agent-based mannequin & DRIVE-AB consortium. PLoS ONE 13, 5 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ariffin, H., Navaratnam, P., Kee, T. Ok. & Balan, G. Antibiotic resistance patterns in nosocomial gram-negative bacterial infections in items with heavy antibiotic utilization. J. Trop. Pediatr. 50, 26–31 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Gould, I. M. & Jappy, B. Traits in hospital antibiotic prescribing after introduction of an antibiotic coverage. J. Antimicrob. Chemother. 38, 895–904 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aminov, R. I. The function of antibiotics and antibiotic resistance in nature. Environ. Microbiol. 11, 2970–2988 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, P. et al. Comparative genome analyses of Serratia marcescens FS14 reveals its excessive antagonistic potential. PLoS One 10, (2015).

  • Bennett, J. W. & Bentley, R. Seeing pink: The story of prodigiosin. (2000).

  • Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant micro organism: A world knowledgeable proposal for interim customary definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Das, S., Sprint, H. R. & Chakraborty, J. Genetic foundation and significance of steel resistant genes in micro organism for bioremediation of contaminated environments with poisonous steel pollution. Appl. Microbiol. Biotechnol. 100, 2967–2984 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jung, J., Jeong, H., Kim, H. J., Lee, D. W. & Lee, S. J. Full genome sequence of Bacillus oceanisediminis 2691, a reservoir of heavy-metal resistance genes. Mar Genomics 30, 73–76 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Shahpiri, A., Majnoun, Z., Kazemi-Nasab, A. & Zarei, M. Enhancement of chromate bioaccumulation by engineered Escherichia coli cells co-expressing chromate reductase (YieF) and a rice metallothionein isoform (OsMT1). J. Chem. Technol. Biotechnol. 96, 1285–1291 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zagui, G. S. et al. Excessive prevalence of heavy steel tolerance genes in micro organism remoted from wastewater: A brand new concern? Environ. Res. 196, (2021).

  • Miyatake, M. & Hayashi, S. Traits of Arsenic-methylation and Arsenic-removal by Bordetella petrii Pressure KC42. Resour. Course of. 63, 18–23 (2016).

    Article 

    Google Scholar
     

  • Komijani, M. et al. Heavy steel air pollution promotes antibiotic resistance potential within the aquatic atmosphere. Environ. Polluti. 274, (2021).

  • Wang, X., Lan, B., Fei, H., Wang, S. & Zhu, G. Heavy steel may drive co-selection of antibiotic resistance in terrestrial subsurface soils. J. Hazard. Materials. 411, (2021).

  • Dickinson, A. W. et al. Heavy steel air pollution and co-selection for antibiotic resistance: A microbial palaeontology strategy. Environ. Int. 132, 105117 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Biswas, R., Halder, U., Kabiraj, A., Mondal, A. & Bandopadhyay, R. Overview on the function of heavy metals tolerance on creating antibiotic resistance in each Gram-negative and Gram-positive micro organism. Arch. Microbiol. 203, 2761–2770 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carleton, A. et al. Clustered multidrug-resistant Bordetella petrii in grownup cystic fibrosis sufferers in Eire: case report and evaluate of antimicrobial therapies. in (Society for Normal Microbiology, 2014).

  • Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: A complete, correct, and quick distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).

  • Farris, J. S. Estimating phylogenetic bushes from distance matrices. Am. Nat. 106, 645–668 (1972).

    Article 

    Google Scholar
     

  • Srivastava, P. & Kowshik, M. Mechanisms of bacterial heavy steel resistance and homeostasis. Heavy Metals Environ. Microorgan. Bioremediat. 15, (2017).

  • Nies, D. H. Efflux-mediated heavy steel resistance in prokaryotes. FEMS Microbiol. Rev. 27, 313–339 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chandrangsu, P., Rensing, C. & Helmann, J. D. Metallic homeostasis and resistance in micro organism. Nat. Rev. Microbiol. 15, 338–350 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Negrete, F. et al. Genome-wide survey of efflux pump-coding genes related to Cronobacter survival, osmotic adaptation, and persistence. Curr. Opin. Meals Sci. 30, 32–42 (2019).

    Article 

    Google Scholar
     

  • Yeh, J. I. et al. Excessive-resolution constructions of the ligand binding area of the wild-type bacterial aspartate receptor. J. Mol. Biol. 262, 186–201 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taylor-Mulneix, D. L. et al. Bordetella bronchiseptica exploits the complicated life cycle of Dictyostelium discoideum as an amplifying transmission vector. PLoS Biol. 15, e2000420 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gross, R. et al. The lacking hyperlink: Bordetella petrii is endowed with each the metabolic versatility of environmental micro organism and virulence traits of pathogenic Bordetellae. BMC Genom. 9, 1–14 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Menez, J., Buckingham, R. H., de Zamaroczy, M. & Campelli, C. Ok. Peptidyl-tRNA hydrolase in Bacillus subtilis, encoded by spoVC, is important to vegetative progress, whereas the homologous enzyme in Saccharomyces cerevisiae is dispensable. Mol. Microbiol. 45, 123–129 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stragier, P. & Losick, R. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30, 297–341 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cho, W.-I. & Chung, M.-S. Bacillus spores: A evaluate of their properties and inactivation processing applied sciences. Meals Sci. Biotechnol. 29, 1447–1461 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Delbrück, A. I., Zhang, Y., Heydenreich, R. & Mathys, A. Bacillus spore germination at average excessive stress: A evaluate on underlying mechanisms, influencing components, and its comparability with nutrient germination. Complete Rev. Meals Sci. Meals Saf. 20, 4159–4181 (2021).

    Article 

    Google Scholar
     

  • Register, Ok. B. & Sanden, G. N. Prevalence and sequence variants of IS 481 in Bordetella bronchiseptica: implications for IS 481-based detection of Bordetella pertussis. J. Clin. Microbiol. 44, 4577–4583 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kholodii, G. Y. et al. 4 genes, two ends, and a res area are concerned in transposition of Tn5053: A paradigm for a novel household of transposons carrying both a mer operon or an integron. Mol. Microbiol. 17, 1189–1200 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Doron, S. et al. Systematic discovery of antiphage protection techniques within the microbial pangenome. Science (1979) 359, 6379 (2018).

  • Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the excellent antibiotic resistance database. Nucleic Acids Res. 48, D517–D525 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bilinovich, S. M., & Leeper, T. C. Silver binding to bacterial glutaredoxins noticed by NMR. Biophysica 1, 359–376 (2021).

  • Pao, S. S., Paulsen, I. T. & Saier, M. H. Jr. Main facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chi, Y. H. et al. The physiological capabilities of common stress proteins and their molecular mechanism to guard crops from environmental stresses. Entrance. Plant Sci. 750, (2019).

  • Axelsen, Ok. B. & Palmgren, M. G. Evolution of substrate specificities within the P-type ATPase superfamily. J. Mol. Evol. 46, 84–101 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Basheer, S. M. et al. Construction exercise characterization of Bordetella petrii lipid A, from atmosphere to human isolates. Biochimie 120, 87–95 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hamidou Soumana, I., Linz, B. & Harvill, E. T. Environmental origin of the genus Bordetella. Entrance. Microbiol. 8, 28 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fullen, A. R., Yount, Ok. S., Dubey, P. & Deora, R. Whoop! There it’s: The shocking resurgence of pertussis. PLoS Pathog. 16, e1008625 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kameyama, H. et al. Pathogenicity of Bordetella bronchiseptica remoted from apparently wholesome rabbits in guinea pig, rat, and mouse. J. Vet. Med. Sci. 21–494 (2022).

  • Gross, R., Keidel, Ok. & Schmitt, Ok. Resemblance and divergence: the “new” members of the genus Bordetella. Med. Microbiol. Immunol. 199, 155–163 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Wang, Z. et al. Comparative genomic evaluation of Bordetella bronchiseptica isolates from the lungs of pigs with porcine respiratory illness complicated (PRDC). Infect. Genet. Evolut. 81, (2020).

  • Moriuchi, R., Dohra, H., Kanesaki, Y. & Ogawa, N. Full genome sequence of 3-chlorobenzoate-degrading bacterium Cupriavidus necator NH9 and reclassification of the strains of the genera Cupriavidus and Ralstonia based mostly on phylogenetic and whole-genome sequence analyses. Entrance. Microbiol. 10, 133 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smith, H. B. et al. Listeria monocytogenes MenI encodes a DHNA-CoA thioesterase crucial for menaquinone biosynthesis, cytosolic survival, and virulence. Infect. Immun. 89, (2021).

  • Lamb, H. Ok., Dodds, A. L., Swatman, D. R., Cairns, E. & Hawkins, A. R. Deletion of the N-terminal area of the AREA protein is correlated with a derepressed phenotype with respect to nitrogen metabolite repression. J. Bacteriol. 179, 6649–6656 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Holden, E. R. et al. Massively parallel transposon mutagenesis identifies temporally important genes for biofilm formation in Escherichia coli. Microb. Genom. 7, (2021).

  • Dailey, H. A. Terminal steps of haem biosynthesis. Biochem. Soc. Trans. 30, 590–595 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Padovani, D., Thomas, F., Trautwein, A. X., Mulliez, E. & Fontecave, M. Activation of Class III Ribonucleotide Reductase from E. coli. The Electron Switch from the Iron− Sulfur Heart to S-Adenosylmethionine. Biochemistry 40, 6713–6719 (2001).

  • Ogasawara, H., Ohe, S. & Ishihama, A. Position of transcription issue NimR (YeaM) in sensitivity management of Escherichia coli to 2-nitroimidazole. FEMS Microbiol. Lett. 362, 1–8 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Iwasaki, H. et al. A KaiC-interacting sensory histidine kinase, SasA, essential to maintain sturdy circadian oscillation in cyanobacteria. Cell 101, 223–233 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abramson, J. et al. The construction of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding web site. Nat. Struct. Biol. 7, 910–917 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fabianek, R. A., Hofer, T. & Thöny-Meyer, L. Characterization of the Escherichia coli CcmH protein reveals new insights into the redox pathway required for cytochrome c maturation. Arch. Microbiol. 171, 92–100 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grass, G., Wong, M. D., Rosen, B. P., Smith, R. L. & Rensing, C. ZupT is a Zn (II) uptake system in Escherichia coli. J. Bacteriol. 184, 864–866 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Franke, S., Grass, G., Rensing, C. & Nies, D. H. Molecular evaluation of the copper-transporting efflux system CusCFBA of Escherichia coli. J. Bacteriol. 185, 3804–3812 (2003).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Locher, Ok. P. Construction and mechanism of ATP-binding cassette transporters. Philos. Trans. R. Soc. B Biol. Sci. 364, 239–245 (2009).

    CAS 
    Article 

    Google Scholar
     

  • https://www.ncbi.nlm.nih.gov/genome.

  • Fujishima, Ok. & Kanai, A. tRNA gene range within the three domains of life. Entrance. Genet. 5, 142 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Halder, U. et al. Manufacturing of prodigiosin by a drug-resistant Serratia rubidaea HB01 remoted from sewage. Environ. Maintain. 3, 279–287 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Valsesia, G., Roos, M., Böttger, E. C. & Hombach, M. A statistical strategy for willpower of disk diffusion-based cutoff values for systematic characterization of wild-type and non-wild-type bacterial populations in antimicrobial susceptibility testing. J. Clin. Microbiol. 53, 1812–1822 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sarker, M. R. et al. Research of the impression of occupational publicity of pharmaceutical staff on the event of antimicrobial drug resistance. J. Occup. Well being 12–14 (2014).

  • Saranya, Ok. et al. Biosorption of multi-heavy metals by coral related phosphate solubilising micro organism Cronobacter muytjensii KSCAS2. J. Environ. Handle 222, 396–401 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Technic,. Committee on Bacteriological, Pelczar, M. J., Bard, R. C. & Burnett, G. W. Handbook of microbiological strategies. (McGraw-Hill E book Firm, 1957).

  • Halder, U. et al. Draft genome report of Bacillus altitudinis SORB11, remoted from the Indian sector of the Southern Ocean. Genome Announc. 5, (2017).

  • Andrews, S. et al. FastQC. A top quality management software for prime throughput sequence information. 370, (2010).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A versatile trimmer for Illumina sequence information. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bankevich, A. et al. SPAdes: A brand new genome meeting algorithm and its purposes to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gladman, S. & Seemann, T. Velvet optimiser. http://bioinformatics.web.au/software program.velvetoptimiser.shtml (2008).

  • Simpson, J. T. et al. ABySS: a parallel assembler for brief learn sequence information. Genome Res. 19, 1117–1123 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • high quality evaluation software for genome assemblies. Gurevich, A., Saveliev, V. V. & N., T. G. QUAST. Bioinformatics 29, 1072–1075 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Rodriguez-R, L. M. et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene range evaluation of Archaea and Micro organism on the complete genome stage. Nucleic Acids Res. 46, W282–W288 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roosaare, M. et al. StrainSeeker: Quick identification of bacterial strains from uncooked sequencing reads utilizing user-provided information bushes. PeerJ 5, (2017).

  • Meier-Kolthoff, J. P. & Göker, M. TYGS is an automatic high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10, 1–10 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Boetzer, M. & Pirovano, W. SSPACE-LongRead: Scaffolding bacterial draft genomes utilizing lengthy learn sequence data. BMC Bioinf. 15, 1–9 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Nadalin, F., Vezzi, F. & Policriti, A. GapFiller: A de novo meeting strategy to fill the hole inside paired reads. BMC Bioinformatics 13, 1–16 (2012).

    Article 

    Google Scholar
     

  • Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: A number of genome alignment with gene achieve, loss and rearrangement. PLoS ONE 5, 6 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the standard of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arkin, A. P. et al. KBase: The US division of vitality techniques biology knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Seemann, T. Prokka: Speedy prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aziz, R. Ok. et al. The RAST Server: Speedy annotations utilizing subsystems expertise. BMC Genomics 9, 1–15 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Brettin, T. et al. RASTtk: a modular and extensible implementation of the RAST algorithm for constructing customized annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 1–6 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grant, J. R. & Stothard, P. The CGView Server: A comparative genomics software for round genomes. Nucleic Acids Res 36, W181–W184 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bertelli, C., Laird, M. R. & Williams, Ok. P. Simon Fraser College Analysis Computing Group; Lau, BY; Hoad, G.; Winsor, GL; Brinkman, FSL IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45(W1), W30–W35 (2017).

  • Davis, J. J. et al. The PATRIC bioinformatics useful resource middle: increasing information and evaluation capabilities. Nucleic Acids Res 48(D1), D606–D612 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Richter, M. & Rosselló-Móra, R. Shifting the genomic gold customary for the prokaryotic species definition. Proc. Natl. Acad. Sci. 106, 19126–19131 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Crew, R. C. R: A language and atmosphere for statistical computing. (2013).

  • Stothard, P. & Wishart, D. S. Round genome visualization and exploration utilizing CGView. Bioinformatics 21, 537–539 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ozer, E. A., Allen, J. P. & Hauser, A. R. Characterization of the core and accent genomes of Pseudomonas aeruginosa utilizing bioinformatic instruments Backbone and AGEnt. BMC Genomics 15, 1–17 (2014).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments