Watnick P, Kolter R. Biofilm, metropolis of microbes. J Bacteriol. 2000;182:2675–9.
Yin W, Wang Y, Liu L, He J. Biofilms: the microbial “protecting clothes” in excessive environments. Int J Mol Sci. 2019;20:3423.
Islam N, Kim Y, Ross JM, Marten MR. Proteomic evaluation of Staphylococcus aureus biofilm cells grown below physiologically related fluid shear stress circumstances. Proteome Sci. 2014;12:21.
Thomen P, Robert J, Monmeyran A, Bitbol AF, Douarche C, Henry N. Bacterial biofilm below stream: first a bodily battle to remain, then a matter of respiration. PLoS One. 2017;12:1–24.
Derlon N, Peter-Varbanets M, Scheidegger A, Pronk W, Morgenroth E. Predation influences the construction of biofilm developed on ultrafiltration membranes. Water Res. 2012;46:3323–33.
Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an rising battleground in microbial communities. Antimicrob Resist Infect Management. 2019;8:76.
Solokhina A, Bruckner D, Bonkat G, Braissant O. Metabolic exercise of mature biofilms of Mycobacterium tuberculosis and different non-tuberculous mycobacteria. Sci Rep. 2017;7:9225.
Wan N, Wang H, Ng CK, Mukherjee M, Ren D, Cao B, et al. Bacterial metabolism throughout biofilm progress investigated by 13C tracing. Entrance Microbiol. 2018;9:2657.
Qi Z, Chen L, Zhang W. Comparability of transcriptional heterogeneity of eight genes between batch Desulfovibrio vulgaris biofilm and planktonic tradition at a single-cell stage. Entrance Microbiol. 2016;7:597.
Nett JE, Lepak AJ, Marchillo Ok, Andes DR. Time course world gene expression evaluation of an in vivo Candida biofilm. J Infect Dis. 2009;200:307–13.
Ghigo JM. Pure conjugative plasmids induce bacterial biofilm growth. Nature. 2001;412:442–5.
Molin S, Tolker-Nielsen T. Gene switch happens with enhanced effectivity in biofilms and induces enhanced stabilisation of the biofilm construction. Curr Opin Biotechnol. 2003;14:255–61.
Gabrilska RA, Rumbaugh KP. Biofilm fashions of polymicrobial an infection. Future Microbiol. 2015;10:1997–2015.
Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. Environmental components that form biofilm formation. Biosci Biotechnol Biochem. 2016;80:7–12.
Lori C, Ozaki S, Steiner S, Bohm R, Abel S, Dubey BN. et al. Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication. Nature. 2015;523:236–9.
Mills E, Petersen E, Kulasekara BR, Miller SI. A direct display for c-di-GMP modulators reveals a Salmonella Typhimurium periplasmic ʟ-arginine–sensing pathway. Sci Sign. 2015;8:ra57.
Ahmed NA, Petersen FC, Scheie AA. AI-2/LuxS is concerned in elevated biofilm formation by Streptococcus intermedius within the presence of antibiotics. Antimicrob Brokers Chemother. 2009;53:4258–63.
Antonova ES, Hammer BK. Quorum-sensing autoinducer molecules produced by members of a multispecies biofilm promote horizontal gene switch to Vibrio cholerae. FEMS Microbiol Lett. 2011;322:68–76.
Chavez de Paz LE, Lemos JA, Wickstrom C, Sedgley CM. Position of (p)ppGpp in biofilm formation by Enterococcus faecalis. Appl Environ Microbiol. 2012;78:1627–30.
Abranches J, Martinez AR, Kajfasz JK, Chavez V, Garsin DA, Lemos JA. The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis. J Bacteriol. 2009;191:2248–56.
Han SK, Shin MS, Park HE, Kim SY, Lee WK. Screening of bacteriocin-producing Enterococcus faecalis strains for antagonistic actions in opposition to Clostridium perfringens. Korean J Meals Sci Anim Resour. 2014;34:614–21.
Lemme A, Grobe L, Reck M, Tomasch J, Wagner-Dobler I. Subpopulation-specific transcriptome evaluation of competence-stimulating-peptide-induced Streptococcus mutans. J Bacteriol. 2011;193:1863–77.
van der Ploeg JR. Regulation of bacteriocin manufacturing in Streptococcus mutans by the quorum-sensing system required for growth of genetic competence. J Bacteriol. 2005;187:3980–9.
Kang D, Kirienko NV. Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa. J Microbiol. 2018;56:449–57.
Keogh D, Tay WH, Ho YY, Dale JL, Chen S, Umashankar S, et al. Enterococcal metabolite cues facilitate interspecies area of interest modulation and polymicrobial an infection. Cell Host Microbe. 2016;20:493–503.
Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama H. Biofilm formation by lactic acid micro organism and resistance to environmental stress. J Biosci Bioeng. 2008;106:381–6.
Ahn KB, Baik JE, Yun CH, Han SH. Lipoteichoic acid inhibits Staphylococcus aureus biofilm formation. Entrance Microbiol. 2018;9:327.
Fabretti F, Theilacker C, Baldassarri L, Kaczynski Z, Kropec A, Holst O, et al. Alanine esters of enterococcal lipoteichoic acid play a job in biofilm formation and resistance to antimicrobial peptides. Infect Immun. 2006;74:4164–71.
Wu H, Zeng M, Fives-Taylor P. The glycan moieties and the N-terminal polypeptide spine of a fimbria-associated adhesin, Fap1, play distinct roles within the biofilm growth of Streptococcus parasanguinis. Infect Immun. 2007;75:2181–8.
Lee J, Jayaraman A, Wooden TK. Indole is an inter-species biofilm sign mediated by SdiA. BMC Microbiol. 2007;7:42.
Chu W, Zere TR, Weber MM, Wooden TK, Whiteley M, Hidalgo-Romano B, et al. Indole manufacturing promotes Escherichia coli mixed-culture progress with Pseudomonas aeruginosa by inhibiting quorum signaling. Appl Environ Microbiol. 2012;78:411–9.
Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signalling in micro organism. FEMS Microbiol Rev. 2013;37:156–81.
Ch’ng JH, Chong KKL, Lam LN, Wong JJ, Kline KA. Biofilm-associated an infection by enterococci. Nat Rev Microbiol. 2019;17:82–94.
Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol. 2017;15:271–84.
Mathur H, Area D, Rea MC, Cotter PD, Hill C, Ross RP. Combating biofilms with lantibiotics and different teams of bacteriocins. NPJ Biofilms Microbiomes. 2018;4:9.
Hu M, Zhang C, Mu Y, Shen Q, Feng Y. Indole impacts biofilm formation in micro organism. Indian J Microbiol. 2010;50:362–8.
Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. Interspecies interactions inside oral microbial communities. Microbiol Mol Biol Rev. 2007;71:653–70.
Percy MG, Grundling A. Lipoteichoic acid synthesis and performance in gram-positive micro organism. Annu Rev Microbiol. 2014;68:81–100.
Colomer-Winter C, Flores-Mireles AL, Kundra S, Hultgren SJ, Lemos JA. p)ppGpp and CodY promote Enterococcus faecalis virulence in a murine mannequin of catheter-associated urinary tract an infection. mSphere. 2019;4:e00392–19.
Gomes Von Borowski R, Gnoatto SCB, Macedo AJ, Gillet R. Promising antibiofilm exercise of peptidomimetics. Entrance Microbiol. 2018;9:2157.
Harrison F, Buckling A. Siderophore manufacturing and biofilm formation as linked social traits. ISME J. 2009;3:632–4.
Dworkin J. The medium is the message: interspecies and interkingdom signaling by peptidoglycan and associated bacterial glycans. Annu Rev Microbiol. 2014;68:137–54.
Ruoff KL, de la Maza L, Murtagh MJ, Spargo JD, Ferraro MJ. Species identities of enterococci remoted from scientific specimens. J Clin Microbiol. 1990;28:435–7.
Valaperta R, Tejada MR, Frigerio M, Moroni A, Ciulla E, Cioffi S, et al. Staphylococcus aureus nosocomial infections: the function of a speedy and low-cost characterization for the institution of a surveillance system. N Microbiol. 2010;33:223–32.
Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human illness. Virulence. 2011;2:445–59.
Dahl A, Bruun NE. Enterococcus faecalis infective endocarditis: concentrate on scientific elements. Knowledgeable Rev Cardiovasc Ther. 2013;11:1247–57.
Fernandez Guerrero ML, Gonzalez Lopez JJ, Goyenechea A, Fraile J, de Gorgolas M. Endocarditis attributable to Staphylococcus aureus: a reappraisal of the epidemiologic, scientific, and pathologic manifestations with evaluation of things figuring out end result. Med (Baltim). 2009;88:1–22.
Zheng JX, Bai B, Lin ZW, Pu ZY, Yao WM, Chen Z, et al. Characterization of biofilm formation by Enterococcus faecalis isolates derived from urinary tract infections in China. J Med Microbiol. 2018;67:60–7.
Muder RR, Brennen C, Rihs JD, Wagener MM, Obman A, Stout JE, et al. Isolation of Staphylococcus aureus from the urinary tract affiliation of isolation with symptomatic urinary tract an infection and subsequent staphylococcal bacteremia. Clin Infect Dis. 2006;42:46–50.
Fazli M, Bjarnsholt T, Kirketerp-Moller Ok, Jorgensen B, Andersen AS, Krogfelt KA, et al. Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in continual wounds. J Clin Microbiol. 2009;47:4084–9.
Rajkumari N, Mathur P, Misra MC. Comfortable tissue and wound infections on account of Enterococcus spp. amongst hospitalized trauma sufferers in a creating nation. J Glob Infect Dis. 2014;6:189–93.
Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and related approaches to wound administration. Clin Microbiol Rev. 2001;14:244–69.
Gjodsbol Ok, Christensen JJ, Karlsmark T, Jorgensen B, Klein BM, Krogfelt KA. A number of bacterial species reside in continual wounds: a longitudinal research. Int Wound J. 2006;3:225–31.
Cataldo MC, Bonura C, Caputo G, Aleo A, Rizzo G, Geraci DM, et al. Colonization of stress ulcers by multidrug-resistant microorganisms in sufferers receiving house care. Scand J Infect Dis. 2011;43:947–52.
Weigel LM, Donlan RM, Shin DH, Jensen B, Clark NC, McDougal LK, et al. Excessive-level vancomycin-resistant Staphylococcus aureus isolates related to a polymicrobial biofilm. Antimicrob Brokers Chemother. 2007;51:231–8.
Zhu W, Murray PR, Huskins WC, Jernigan JA, McDonald LC, Clark NC, et al. Dissemination of an Enterococcus Inc18-Like vanA plasmid related to vancomycin-resistant Staphylococcus aureus. Antimicrob Brokers Chemother. 2010;54:4314–20.
Flannagan SE, Chow JW, Donabedian SM, Brown WJ, Perri MB, Zervos MJ, et al. Plasmid content material of a vancomycin-resistant Enterococcus faecalis isolate from a affected person additionally colonized by Staphylococcus aureus with a VanA phenotype. Antimicrob Brokers Chemother. 2003;47:3954–9.
Gilmore MS, Salamzade R, Selleck E, Bryan N, Mello SS, Manson AL, et al. Genes contributing to the distinctive biology and intrinsic antibiotic resistance of Enterococcus faecalis. mBio. 2020;11:e02962–20.
Pritchard GG, Wimpenny JW. Cytochrome formation, oxygen-induced proton extrusion and respiratory exercise in Streptococcus faecalis var. zymogenes grown within the presence of haematin. J Gen Microbiol. 1978;104:15–22.
Ramsey M, Hartke A, Huycke M The physiology and metabolism of enterococci. In: Gilmore MS, Clewell DB, Ike Y, Shankar N, editors. Enterococci: from commensals to main causes of drug resistant an infection. Boston. 2014.
Baum RH, Dolin MI. Isolation of 2-solanesyl-1,4-naphthoquinone from Streptococcus faecalis, 10Cl. J Biol Chem. 1965;240:3425–33.
Ritchey TW, Seely HW Jr. Distribution of cytochrome-like respiration in streptococci. J Gen Microbiol. 1976;93:195–203.
Winstedt L, Frankenberg L, Hederstedt L, von Wachenfeldt C. Enterococcus faecalis V583 incorporates a cytochrome bd-type respiratory oxidase. J Bacteriol. 2000;182:3863–6.
Huycke MM, Moore D, Joyce W, Smart P, Shepard L, Kotake Y, et al. Extracellular superoxide manufacturing by Enterococcus faecalis requires demethylmenaquinone and is attenuated by useful terminal quinol oxidases. Mol Microbiol. 2001;42:729–40.
Painter KL, Corridor A, Ha KP, Edwards AM. The electron transport chain sensitizes Staphylococcus aureus and Enterococcus faecalis to the oxidative burst. Infect Immun. 2017;85:e00659–17.
Kristich CJ, Nguyen VT, Le T, Barnes AM, Grindle S, Dunny GM. Growth and use of an environment friendly system for random mariner transposon mutagenesis to determine novel genetic determinants of biofilm formation within the core Enterococcus faecalis genome. Appl Environ Microbiol. 2008;74:3377–86.
Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, Bose JL, et al. A genetic useful resource for speedy and complete phenotype screening of nonessential Staphylococcus aureus genes. mBio. 2013;4:e00537–12.
Dale JL, Beckman KB, Willett JLE, Nilson JL, Palani NP, Baller JA, et al. Complete useful evaluation of the Enterococcus faecalis core genome utilizing an ordered, sequence-defined assortment of insertional mutations in pressure OG1RF. mSystems. 2018;3:e00062–18.
Rahimi N, Poursina F, Ghaziasgar FS, Sepehrpor S, Hassanzadeh A. Presence of virulence issue genes (gelE and esp) and biofilm formation in scientific Enterococcus faecalis and Enterococcus faecium remoted from urinary tract an infection in Isfahan, Iran. Gene Rep. 2018;13:72–5.
O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. Genetic approaches to review of biofilms. Strategies Enzymol. 1999;310:91–109.
Biyikoglu B, Ricker A, Diaz PI. Pressure-specific colonization patterns and serum modulation of multi-species oral biofilm growth. Anaerobe. 2012;18:459–70.
MacKenzie KD, Palmer MB, Koster WL, White AP. Inspecting the hyperlink between biofilm formation and the power of pathogenic Salmonella strains to colonize a number of host species. Entrance Vet Sci. 2017;4:138.
Vanhommerig E, Moons P, Pirici D, Lammens C, Hernalsteens JP, De Greve H, et al. Comparability of biofilm formation between main clonal lineages of methicillin resistant Staphylococcus aureus. PLoS One 2014;9:e104561.
Dale JL, Nilson JL, Barnes AMT, Dunny GM. Restructuring of Enterococcus faecalis biofilm structure in response to antibiotic-induced stress. NPJ Biofilms Microbiomes. 2017;3:15.
Dale JL, Cagnazzo J, Phan CQ, Barnes AM, Dunny GM. A number of roles for Enterococcus faecalis glycosyltransferases in biofilm-associated antibiotic resistance, cell envelope integrity, and conjugative switch. Antimicrob Brokers Chemother. 2015;59:4094–105.
Garsin DA, Urbach J, Huguet-Tapia JC, Peters JE, Ausubel FM. Building of an Enterococcus faecalis Tn917-mediated-gene-disruption library gives perception into Tn917 insertion patterns. J Bacteriol. 2004;186:7280–9.
Huycke MM, Moore D, Joyce W, Smart P, Shepard L, Kotake Y, et al. Extracellular superoxide manufacturing by Enterococcus faecalis requires demethylmenaquinone and is attenuated by useful terminal quinol oxidases. Mol Microbiol .2001;42:729–40.
Baureder M, Hederstedt L. Genes vital for catalase exercise in Enterococcus faecalis. PLoS One. 2012;7:e36725.
Bryan-Jones DG, Whittenbury R. Haematin-dependent oxidative phosphorylation in Streptococcus faecalis. J Gen Microbiol. 1969;58:247–60.
Winstedt L, Yoshida Ok, Fujita Y, von Wachenfeldt C. Cytochrome bd biosynthesis in Bacillus subtilis: characterization of the cydABCD operon. J Bacteriol. 1998;180:6571–80.
von Eiff C, Heilmann C, Proctor RA, Woltz C, Peters G, Gotz F. A site-directed Staphylococcus aureus hemB mutant is a small-colony variant which persists intracellularly. J Bacteriol. 1997;179:4706–12.
Hammer ND, Skaar EP. Highly effective genetic useful resource for the research of methicillin-resistant Staphylococcus aureus. mBio. 2013;4:e00166–13.
Mashruwala AA, Guchte AV, Boyd JM. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus. Elife. 2017;6:e23845
Ike Y, Craig RA, White BA, Yagi Y, Clewell DB. Modification of Streptococcus faecalis intercourse pheromones after acquisition of plasmid DNA. Proc Natl Acad Sci USA. 1983;80:5369–73.
Su YA, Sulavik MC, He P, Makinen KK, Makinen PL, Fiedler S, et al. Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. liquefaciens. Infect Immun. 1991;59:415–20.
Kruger M, Shehata AA, Schrodl W, Rodloff A. Glyphosate suppresses the antagonistic impact of Enterococcus spp. on Clostridium botulinum. Anaerobe. 2013;20:74–8.
Graham CE, Cruz MR, Garsin DA, Lorenz MC. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc Natl Acad Sci USA. 2017;114:4507–12.
Hughes ER, Winter SE. Enterococcus faecalis: E. coli’s siderophore-inducing sidekick. Cell Host Microbe. 2016;20:411–2.
Tien BYQ, Goh HMS, Chong KKL, Bhaduri-Tagore S, Holec S, Costume R, et al. Enterococcus faecalis promotes innate immune suppression and polymicrobial catheter-associated urinary tract an infection. Infect Immun. 2017;85:e00378–17.
Laganenka L, Sourjik V. Autoinducer 2-dependent Escherichia coli biofilm formation is enhanced in a dual-species coculture. Appl Environ Microbiol. 2018;84:e02638–17.
Lee Ok, Lee KM, Kim D, Yoon SS. Molecular determinants of the thickened matrix in a dual-species Pseudomonas aeruginosa and Enterococcus faecalis biofilm. Appl Environ Microbiol. 2017;83:e01182–17.
Nair N, Biswas R, Gotz F, Biswas L. Impression of Staphylococcus aureus on pathogenesis in polymicrobial infections. Infect Immun. 2014;82:2162–9.
Harriott MM, Noverr MC. Candida albicans and Staphylococcus aureus kind polymicrobial biofilms: results on antimicrobial resistance. Antimicrob Brokers Chemother. 2009;53:3914–22.
El-Azizi MA, Starks SE, Khardori N. Interactions of Candida albicans with different Candida spp. and micro organism within the biofilms. J Appl Microbiol. 2004;96:1067–73.
Peters BM, Noverr MC. Candida albicans–Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity. Infect Immun. 2013;81:2178–89.
Morales DK, Hogan DA. Candida albicans interactions with micro organism within the context of human well being and illness. PLoS Pathog. 2010;6:e1000886.
Peters BM, Jabra-Rizk MA, Scheper MA, Leid JG, Costerton JW, Shirtliff ME. Microbial interactions and differential protein expression in Staphylococcus aureus –Candida albicans dual-species biofilms. FEMS Immunol Med Microbiol. 2010;59:493–503.
Otto M, Echner H, Voelter W, Gotz F. Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun. 2001;69:1957–60.
Lina G, Boutite F, Tristan A, Bes M, Etienne J, Vandenesch F. Bacterial competitors for human nasal cavity colonization: function of Staphylococcal agr alleles. Appl Environ Microbiol. 2003;69:18–23.
Piewngam P, Zheng Y, Nguyen TH, Dickey SW, Joo HS, Villaruz AE, et al. Pathogen elimination by probiotic Bacillus by way of signalling interference. Nature. 2018;562:532–7.
Voggu L, Schlag S, Biswas R, Rosenstein R, Rausch C, Gotz F. Microevolution of cytochrome bd oxidase in Staphylococci and its implication in resistance to respiratory toxins launched by Pseudomonas. J Bacteriol. 2006;188:8079–86.
Kessler E, Safrin M, Olson JC, Ohman DE. Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem. 1993;268:7503–8.
Regev-Yochay G, Trzcinski Ok, Thompson CM, Malley R, Lipsitch M. Interference between Streptococcus pneumoniae and Staphylococcus aureus: in vitro hydrogen peroxide-mediated killing by Streptococcus pneumoniae. J Bacteriol. 2006;188:4996–5001.
Ocana VS, de Ruiz Holgado AA, Nader-Macias ME. Development inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus paracasei subsp. paracasei remoted from the human vagina. FEMS Immunol Med Microbiol. 1999;23:87–92.
Zarate G, Nader-Macias ME. Affect of probiotic vaginal lactobacilli on in vitro adhesion of urogenital pathogens to vaginal epithelial cells. Lett Appl Microbiol. 2006;43:174–80.
Biswas L, Biswas R, Schlag M, Bertram R, Gotz F. Small-colony variant choice as a survival technique for Staphylococcus aureus within the presence of Pseudomonas aeruginosa. Appl Environ Microbiol. 2009;75:6910–2.
Charlier C, Cretenet M, Even S, Le, Loir Y. Interactions between Staphylococcus aureus and lactic acid micro organism: an previous story with new views. Int J Meals Microbiol. 2009;131:30–9.
Margolis E, Yates A, Levin BR. The ecology of nasal colonization of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus: the function of competitors and interactions with host’s immune response. BMC Microbiol. 2010;10:59.
Artman M, Domenech E, Weiner M. Development of Haemophilus influenzae in simulated blood cultures supplemented with hemin and NAD. J Clin Microbiol. 1983;18:376–9.
Pynnonen M, Stephenson RE, Schwartz Ok, Hernandez M, Boles BR. Hemoglobin promotes Staphylococcus aureus nasal colonization. PLoS Pathog. 2011;7:e1002104.
Cue D, Junecko JM, Lei MG, Blevins JS, Smeltzer MS, Lee CY. SaeRS-dependent inhibition of biofilm formation in Staphylococcus aureus Newman. PLoS One. 2015;10:e0123027.
Ritchey TW, Seeley HW. Cytochromes in Streptococcus faecalis var. zymogenes grown in a haematin-containing medium. J Gen Microbiol. 1974;85:220–8.
Hederstedt L, Gorton L, Pankratova G. Two routes for extracellular electron switch in Enterococcus faecalis. J Bacteriol. 2020;202:e00725–19.
Martin-Gutierrez G, Rodriguez-Beltran J, Rodriguez-Martinez JM, Costas C, Aznar J, Pascual A, et al. Urinary tract physiological circumstances promote ciprofloxacin resistance in low-level-quinolone-resistant Escherichia coli. Antimicrob Brokers Chemother. 2016;60:4252–8.
Giannakopoulos X, Evangelou A, Kalfakakou V, Grammeniatis E, Papandropoulos I, Charalambopoulos Ok. Human bladder urine oxygen content material: implications for urinary tract ailments. Int Urol Nephrol. 1997;29:393–401.
Stacy A, Fleming D, Lamont RJ, Rumbaugh KP, Whiteley M. A commensal bacterium promotes virulence of an opportunistic pathogen by way of cross-respiration. mBio. 2016;7:e00782–16.
Frankenberg L, Brugna M, Hederstedt L. Enterococcus faecalis heme-dependent catalase. J Bacteriol. 2002;184:6351–6.
Baureder M, Barane E, Hederstedt L. In vitro meeting of catalase. J Biol Chem. 2014;289:28411–20.
Yamashita M, Shepherd M, Sales space WI, Xie H, Postis V, Nyathi Y, et al. Construction and performance of the bacterial heterodimeric ABC transporter CydDC: stimulation of ATPase exercise by thiol and heme compounds. J Biol Chem. 2014;289:23177–88.
Holyoake LV, Poole RK, Shepherd M. The CydDC household of transporters and their roles in oxidase meeting and homeostasis. Adv Micro Physiol. 2015;66:1–53.
Pittman MS, Corker H, Wu G, Binet MB, Moir AJ, Poole RK. Cysteine is exported from the Escherichia coli cytoplasm by CydDC, an ATP-binding cassette-type transporter required for cytochrome meeting. J Biol Chem. 2002;277:49841–9.
Shepherd M. The CydDC ABC transporter of Escherichia coli: new roles for a reductant efflux pump. Biochem Soc Trans. 2015;43:908–12.
Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011;1807:1398–413.
Baureder M, Hederstedt L. Heme proteins in lactic acid micro organism. Adv Micro Physiol. 2013;62:1–43.
Poole RK, Cozens AG, Shepherd M. The CydDC household of transporters. Res Microbiol. 2019;170:407–16.
Goldman BS, Kranz RG. ABC transporters related to cytochrome c biogenesis. Res Microbiol. 2001;152:323–9.
Cook dinner GM, Poole RK. Oxidase and periplasmic cytochrome meeting in Escherichia coli Ok-12: CydDC and CcmAB aren’t required for haem-membrane affiliation. Microbiol (Learn). 2000;146:527–36.
Van Tyne D, Manson AL, Huycke MM, Karanicolas J, Earl AM, Gilmore MS. Impression of antibiotic therapy and host innate immune stress on enterococcal adaptation within the human bloodstream. Sci Transl Med. 2019;11:eaat8418.
Makinen PL, Clewell DB, An F, Makinen KK. Purification and substrate specificity of a strongly hydrophobic extracellular metalloendopeptidase (“gelatinase”) from Streptococcus faecalis (pressure 0G1-10). J Biol Chem. 1989;264:3325–34.
Smith DR, Chapman MR. Economical evolution: microbes scale back the artificial price of extracellular proteins. mBio. 2010;1:e00131–10.
Radlinski L, Rowe SE, Kartchner LB, Maile R, Cairns BA, Vitko NP, et al. Pseudomonas aeruginosa exoproducts decide antibiotic efficacy in opposition to Staphylococcus aureus. PLoS Biol. 2017;15:e2003981.
Little W, Black C, Smith AC. Medical implications of polymicrobial synergism results on antimicrobial susceptibility. Pathogens. 2021;10:144