Sonntag, Juli 31, 2022
StartMicrobiologyHeterologous immunization with inactivated vaccine adopted by mRNA-booster elicits robust immunity in...

Heterologous immunization with inactivated vaccine adopted by mRNA-booster elicits robust immunity in opposition to SARS-CoV-2 Omicron variant


  • Speiser, D. E. & Bachmann, M. F. COVID-19: Mechanisms of Vaccination and Immunity. Vaccines (Basel) 8, 404 (2020).

  • Dobler, N. A. & Carbon, C. C. Vaccination in opposition to SARS-CoV-2: a human enhancement story. Transl. Med. Commun. 6, 27 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mallapaty, S. China’s COVID vaccines have been essential – now immunity is waning. Nature 598, 398–399 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McMenamin, M. E. & Cowling, B. J. CoronaVac efficacy information from Turkey. Lancet 398, 1873–1874 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Davis, C. et al. Decreased neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. PLoS Pathog. 17, e1010022 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nadesalingam, A. et al. Paucity and discordance of neutralising antibody responses to SARS-CoV-2 VOCs in vaccinated immunodeficient sufferers and health-care employees within the UK. Lancet Microbe 2, e416–e418 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Choi, A. et al. Security and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in wholesome adults: an interim evaluation. Nat. Med. 27, 2025–2031 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stuart, A. S. V. et al. Immunogenicity, security, and reactogenicity of heterologous COVID-19 major vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines within the UK (Com-COV2): a single-blind, randomised, part 2, non-inferiority trial. Lancet 399, 36–49 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Barros-Martins, J. et al. Immune responses in opposition to SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. Nat. Med. 27, 1525–1529 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • He, X., He, C., Hong, W., Zhang, Okay. & Wei, X. The challenges of COVID-19 Delta variant: prevention and vaccine growth. MedComm 2, 846–854 (2021).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lopez Bernal, J. et al. Effectiveness of Covid-19 Vaccines in opposition to the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 385, 585–594 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Dubey, A., Choudhary, S., Kumar, P. & Tomar, S. Rising SARS-CoV-2 Variants: Genetic Variability and Medical Implications. Curr. Microbiol. 79, 20 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Viana, R. et al. Fast epidemic enlargement of the SARS-CoV-2 Omicron variant in southern Africa. Nature 603, 679–686 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ledford, H. How extreme are Omicron infections? Nature 600, 577–578 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Callaway, E. & Ledford, H. How unhealthy is Omicron? What scientists know thus far. Nature 600, 197–199 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maslo, C. et al. Traits and Outcomes of Hospitalized Sufferers in South Africa Through the COVID-19 Omicron Wave In contrast With Earlier Waves. JAMA 327, 583–584 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kozlov, M. Waning COVID super-immunity raises questions on Omicron. Nature, https://doi.org/10.1038/d41586-021-03674-1 (2021).

  • Andrews, N. et al. Covid-19 Vaccine Effectiveness in opposition to the Omicron (B.1.1.529) Variant. N. Engl J. Med. 386, 1532–1546 (2022).

  • Carreño, J. M. et al. Exercise of convalescent and vaccine serum in opposition to a B.1.1.529 variant SARS-CoV-2 isolate. Nature 602, 682–688 (2022).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Garcia-Beltran, W. F., et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity in opposition to SARS-CoV-2 Omicron variant. Cell 185, 457–466 (20212).

  • Gruell, H. et al. mRNA booster immunization elicits potent neutralizing serum exercise in opposition to the SARS-CoV-2 Omicron variant. Nat. Med. 28, 477–480 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marcotte, H. et al. Immunity to SARS-CoV-2 as much as 15 months after an infection. iScience 25, 103743 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Sherina, N. et al. Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 sufferers 6-8 months after the an infection. Med (N.Y) 2, 281–295 e284 (2021).


    Google Scholar
     

  • Fakhroo, A., AlKhatib, H. A., Al Thani, A. A. & Yassine, H. M. Reinfections in COVID-19 Sufferers: Influence of Virus Genetic Variability and Host Immunity. Vaccines (Basel) 9, 1168 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Knezevic, I. et al. WHO Worldwide Normal for analysis of the antibody response to COVID-19 vaccines: name for pressing motion by the scientific group. Lancet Microbe 3, e235–e240 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Haveri, A., et al. Neutralizing antibodies to SARS-CoV-2 Neutralizing antibodies to SARS-CoV-2 Omicron variant after third mRNA vaccination in well being care employees and aged topics. Eur. J. Immunol. https://doi.org/10.1002/eji.202149785 (2022).

  • Sheward, D. J., et al. Variable lack of antibody efficiency in opposition to SARS-CoV-2 B. 1.1. 529 (Omicron). bioRxiv, https://doi.org/10.1101/2021.12.19.473354 (2021).

  • Roessler, A., Riepler, L., Bante, D., von Laer, D. & Kimpel, J. J. M. SARS-CoV-2 Omicron Variant Neutralization in Serum from Vaccinated and Convalescent Individuals. N. Engl. J. Med. 386, 698–700 (2022).

    Article 

    Google Scholar
     

  • Planas, D. et al. Appreciable escape of SARS-CoV-2 variant Omicron to antibody neutralization. Nature 602, 671–675 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cele, S. et al. SARS-CoV-2 Omicron has in depth however incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 for an infection. Nature 602, 654–656 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hastie, Okay. M. et al. Defining variant-resistant epitopes focused by SARS-CoV-2 antibodies: a worldwide consortium examine. Science 374, 472–478 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khoury, D. S. et al. Neutralizing antibody ranges are extremely predictive of immune safety from symptomatic SARS-CoV-2 an infection. Nat. Med 27, 1205–1211 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pagliari, M., et al. Omicron Neutralizing and Anti-SARS-CoV-2 S-RBD Antibodies in Naïve and Convalescent Populations After Homologous and Heterologous Boosting With an mRNA Vaccine. Lancet https://doi.org/10.2139/ssrn.4016530 (2022).

  • Mok, C. Okay. P. et al. Comparability of the immunogenicity of BNT162b2 and CoronaVac COVID-19 vaccines in Hong Kong. Respirology 27, 301–310 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Liu, Z. et al. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe 29, 477–488 e474 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, Okay., et al. A 3rd dose of inactivated vaccine augments the efficiency, breadth, and period of anamnestic responses in opposition to SARS-CoV-2. medRxiv https://doi.org/10.1101/2021.09.02.21261735 (2021).

  • Wesemann, D. R. Omicron’s message on vaccines: boosting begets breadth. Cell 185, 411–413 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bartsch, Y. et al. Omicron variant Spike-specific antibody binding and Fc exercise is preserved in recipients of mRNA or inactivated COVID-19 vaccines. Sci. Transl. Med. 14, eabn9243 (2022).

  • Tarke, A. et al. SARS-CoV-2 vaccination induces immunological reminiscence capable of cross-recognize variants from Alpha to Omicron. Cell 185, 847–859 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Keeton, R. et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 603, 488–492 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gagne, M. et al. mRNA-1273 or mRNA-Omicron increase in vaccinated macaques elicits comparable B cell enlargement, neutralizing responses, and safety from Omicron. Cell 185, 1556–1571 (2022).

  • Gao, Y. et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat. Med. 28, 472–476 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • GeurtsvanKessel, C. H. et al. Divergent SARS CoV-2 Omicron-reactive T- and B cell responses in COVID-19 vaccine recipients. Sci. Immunol. 7, eabo2202 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Callaway, E. Why does the Omicron sub-variant unfold quicker than the unique? Nature 602, 556–557 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen, J. & Wei, G. W. Omicron BA.2 (B.1.1.529.2): excessive potential for changing into the subsequent dominating variant. J Phys. Chem. Lett. 13, 3840–3849 (2022).

  • Yu, J. et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. N. Engl. J. Med. 386, 1579–1580 (2022).

  • Perez-Then, E. et al. Neutralizing antibodies in opposition to the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nat. Med. 28, 481–485 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng, S. M. S. et al. Neutralizing antibodies in opposition to the SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nat. Med. 28, 486–489 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Costa Clemens, S. A. et al. Heterologous versus homologous COVID-19 booster vaccination in earlier recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a part 4, non-inferiority, single blind, randomised examine. Lancet 399, 521–529 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schubert, M. et al. Human serum from SARS-CoV-2 vaccinated and COVID-19 sufferers exhibits decreased binding to the RBD of SARS-CoV-2 Omicron variant compared to the unique Wuhan pressure and the Beta and Delta variants. BMC Med. 3, 20,102 (2021).


    Google Scholar
     

  • Bertoglio, F. et al. A SARS-CoV-2 neutralizing antibody chosen from COVID-19 sufferers binds to the ACE2-RBD interface and is tolerant to most recognized RBD mutations. Cell Rep. 36, 109433 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Korn, J. et al. Baculovirus-free insect cell expression system for prime yield antibody and antigen manufacturing. Sci. Rep. 10, 21393 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bonelli, F. et al. Medical and Analytical Efficiency of an Automated Serological Check That Identifies S1/S2-Neutralizing IgG in COVID-19 Sufferers Semiquantitatively. J. Clin. Microbiol. 58, e01224–01220 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Percivalle, E. et al. Prevalence of SARS-CoV-2 particular neutralising antibodies in blood donors from the Lodi Purple Zone in Lombardy, Italy, as at 06 April 2020. Eur. Surveill. 25, 2001031 (2020).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments