Sonntag, Juli 31, 2022
StartMicrobiologyIncreasing the seek for small-molecule antibacterials by multidimensional profiling

Increasing the seek for small-molecule antibacterials by multidimensional profiling


  • Cox, G. et al. A typical platform for antibiotic dereplication and adjuvant discovery. Cell Chem. Biol. 24, 98–109 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Beckley, A. M. & Wright, E. S. Identification of antibiotic pairs that evade concurrent resistance by way of a retrospective evaluation of antimicrobial susceptibility check outcomes. Lancet Microbe 2, e545–e554 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bosch, B. et al. Genome-wide gene expression tuning reveals various vulnerabilities of M. tuberculosis. Cell 184, 4579–4592.e24 (2021). Systematic titration of gene expression and evaluation of health price in Mycobacterium tuberculosis reveals genes vulnerability and quantify essentiality of bacterial capabilities.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Johnson, E. O. et al. Giant-scale chemical–genetics yields new M. tuberculosis inhibitor courses. Nature 571, 72–78 (2019). Elegant technique to display screen giant chemical libraries in opposition to hypomorph swimming pools of strains depleted of important bacterial targets.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pethe, Okay. et al. A chemical genetic display screen in Mycobacterium tuberculosis identifies carbon-source-dependent development inhibitors devoid of in vivo efficacy. Nat. Commun. 1, 57 (2010).

  • Brown, D. G., Might-Dracka, T. L., Gagnon, M. M. & Tommasi, R. Tendencies and exceptions of bodily properties on antibacterial exercise for Gram-positive and Gram-negative pathogens. J. Med. Chem. 57, 10144–10161 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smith, P. A. et al. Optimized arylomycins are a brand new class of Gram-negative antibiotics. Nature 561, 189–194 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Richter, M. F. et al. Predictive compound accumulation guidelines yield a broad-spectrum antibiotic. Nature 545, 299–304 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gautam, U. S., Sikri, Okay., Vashist, A., Singh, V. & Tyagi, J. S. Essentiality of DevR/DosR interplay with SigA for the dormancy survival program in Mycobacterium tuberculosis. J. Bacteriol. 196, 790–799 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hung, D. T., Shakhnovich, E. A., Pierson, E. & Mekalanos, J. J. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science https://doi.org/10.1126/science.1116739 (2005).

  • Larkins-Ford, J. et al. Systematic measurement of combination-drug landscapes to foretell in vivo therapy outcomes for tuberculosis. Cell Syst. 12, 1046–1063.e7 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stokes, J. M. et al. A deep studying strategy to antibiotic discovery. Cell 180, 688–702.e13 (2020). The authors developed a deep-learning mannequin educated to foretell antibiotics based mostly on construction and in vitro development inhibitory exercise, figuring out a molecule that displays broad-spectrum antibiotic actions in mice.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ding, T. et al. Predicting important metabolic genome content material of niche-specific enterobacterial human pathogens throughout simulation of host environments. PLoS ONE 11, e0149423 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zampieri, M. et al. Excessive-throughput metabolomic evaluation predicts mode of motion of uncharacterized antimicrobial compounds. Sci. Transl. Med. 10, eaal3973 (2018). Mixture of high-throughput metabolic profiling of chemical libraries and restricted proteolysis reveal the modes of motion of latest antituberculosis compounds.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Messner, C. B. et al. Extremely-fast proteomics with Scanning SWATH. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00860-4 (2021). By combining SWATH expertise with high-flow chromatography, the authors developed an ultra-fast proteomics strategy to scale back pattern acquisition measurements to 60 s, offering new alternatives in drug mode-of-action screening.

  • Ye, C. et al. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nat. Commun. 9, 4307 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Stokes, J. M. et al. A multiplexable assay for screening antibiotic lethality in opposition to drug-tolerant micro organism. Nat. Strategies 16, 303–306 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • French, S., Coutts, B. E. & Brown, E. D. Open-source high-throughput phenomics of bacterial promoter-reporter strains. Cell Syst. 7, 339–346.e3 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wawer, M. J. et al. Towards performance-diverse small-molecule libraries for cell-based phenotypic screening utilizing multiplexed high-dimensional profiling. Proc. Natl Acad. Sci. USA 111, 10911–10916 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peters, J. M. et al. A complete, CRISPR-based useful evaluation of important genes in micro organism. Cell 165, 1493–1506 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • O’Rourke, A. et al. Mechanism-of-action classification of antibiotics by world transcriptome profiling. Antimicrob. Brokers Chemother. 64, e01207–e01219 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zoffmann, S. et al. Machine learning-powered antibiotics phenotypic drug discovery. Sci. Rep. 9, 5013 (2019). This examine comprehensively demonstrates the facility of mixing multiparametric highcontent screening and genomic approaches, past classical susceptibility screening, to information lead compound choice and their useful annotation.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Melo, M. C. R., Maasch, J. R. M. A. & de la Fuente-Nunez, C. Accelerating antibiotic discovery by way of synthetic intelligence. Commun. Biol. 4, 1050 (2021).

  • Rousset, F. et al. The influence of genetic variety on gene essentiality throughout the Escherichia coli species. Nat. Microbiol. 6, 301–312 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andrew, J. H., Wale, M. C., Wale, L. J. & Greenwood, D. The impact of cultural circumstances on the exercise of LY146032 in opposition to staphylococci and streptococci. J. Antimicrob. Chemother. 20, 213–221 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Belanger, C. R. et al. Identification of novel targets of azithromycin exercise in opposition to Pseudomonas aeruginosa grown in physiologically related media. Proc. Natl Acad. Sci. USA 117, 33519–33529 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Low, L. A., Mummery, C., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the subsequent decade. Nat. Rev. Drug Discov. 20, 345–361 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mateus, A. et al. Thermal proteome profiling in micro organism: probing protein state in vivo. Mol. Syst. Biol. 14, e8242 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Piazza, I. et al. A machine learning-based chemoproteomic strategy to determine drug targets and binding websites in complicated proteomes. Nat. Commun. 11, 4200 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gainza, P. et al. Deciphering interplay fingerprints from protein molecular surfaces utilizing geometric deep studying. Nat. Strategies 17, 184–192 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Martin, J. Okay. et al. A dual-mechanism antibiotic kills Gram-negative micro organism and avoids drug resistance. Cell 181, 1518–1532.e14 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang, W., Oikonomou, P. & Tavazoie, S. Complete genome-wide perturbations by way of CRISPR adaptation reveal complicated genetics of antibiotic sensitivity. Cell 180, 1002–1017.e31 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Palmer, A. C. & Kishony, R. Opposing results of goal overexpression reveal drug mechanisms. Nat. Commun. 5, 4296 (2014).

  • Nonejuie, P., Burkart, M., Pogliano, Okay. & Pogliano, J. Bacterial cytological profiling quickly identifies the mobile pathways focused by antibacterial molecules. Proc. Natl Acad. Sci. USA 110, 16169–16174 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zheng, H. et al. Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat. Chem. Biol. 13, 218–225 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Claudi, B. et al. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell 158, 722–733 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Campos, A. I. & Zampieri, M. Metabolomics-driven exploration of the chemical drug area to foretell mixture antimicrobial therapies. Mol. Cell 74, 1291–1303.e6 (2019). Evaluating metabolic adjustments induced by genetic and chemical perturbations can be utilized to characterize MoAs of compounds that focus on non-essential processes and thereby allow searches for unconventional antibacterial compounds.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Imai, Y. et al. A brand new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Subramanian, A. et al. A subsequent technology connectivity map: L1000 platform and the primary 1,000,000 profiles. Cell 171, 1437–1452.e17 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Imdahl, F., Vafadarnejad, E., Homberger, C., Saliba, A.-E. & Vogel, J. Single-cell RNA-sequencing studies growth-condition-specific world transcriptomes of particular person micro organism. Nat. Microbiol. 5, 1202–1206 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Madhukar, N. S. et al. A Bayesian machine studying strategy for drug goal identification utilizing various information varieties. Nat. Commun. 10, 5221 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • di Bernardo, D. et al. Chemogenomic profiling on a genome-wide scale utilizing reverse-engineered gene networks. Nat. Biotechnol. 23, 377–383 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Das, P. et al. Accelerated antimicrobial discovery by way of deep generative fashions and molecular dynamics simulations. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-021-00689-x (2021).

  • Moret, N. et al. Cheminformatics instruments for analyzing and designing optimized small-molecule collections and libraries. Cell Chem. Biol. 26, 765–777.e3 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Widya, M. et al. Improvement and optimization of a higher-throughput bacterial compound accumulation assay. ACS Infect. Dis. 5, 394–405 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang, J. H. et al. A white-box machine studying strategy for revealing antibiotic mechanisms of motion. Cell 177, 1649–1661.e9 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Senges, C. H. R. et al. Comparability of proteomic responses as world strategy to antibiotic mechanism of motion elucidation. Antimicrob. Brokers Chemother. 65, e01373–20 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sastry, A. V. et al. Impartial part evaluation recovers constant regulatory indicators from disparate datasets. PLoS Comput. Biol. 17, e1008647 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patel-Murray, N. L. et al. A multi-omics interpretable machine studying mannequin reveals modes of motion of small molecules. Sci. Rep. 10, 954 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kwon, Y. Okay. et al. A domino impact in antifolate drug motion in Escherichia coli. Nat. Chem. Biol. 4, 602–608 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, A. et al. Multi-omic analyses present hyperlinks between low-dose antibiotic therapy and induction of secondary metabolism in Burkholderia thailandensis. mBio https://doi.org/10.1038/s41551-021-00689-x (2020).

  • Freiberg, C., Fischer, H. P. & Brunner, N. A. Discovering the mechanism of motion of novel antibacterial brokers by way of transcriptional profiling of conditional mutants. Antimicrob. Brokers Chemother. 49, 749–759 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhong, F. et al. Drug goal inference by mining transcriptional information utilizing a novel graph convolutional community framework. Protein Cell https://doi.org/10.1007/s13238-021-00885-0 (2021).

  • Anglada-Girotto, M. et al. Combining CRISPRi and metabolomics for useful annotation of compound libraries. Nat. Chem. Biol. https://doi.org/10.1038/s41589-022-00970-3 (2022).

  • Donati, S. et al. Multi-omics evaluation of CRISPRi-knockdowns identifies mechanisms that buffer decreases of enzymes in E. coli metabolism. Cell Syst. https://doi.org/10.1016/j.cels.2020.10.011 (2020). Mannequin-based regulatory evaluation of metabolic adaptive adjustments after gene knockdowns revealed regulatory mechanisms that may buffer fluctuations in enzyme protein ranges.

  • Christodoulou, D. et al. Reserve flux capability within the pentose phosphate pathway allows Escherichia coli’s fast response to oxidative stress. Cell Syst. 6, 569–578.e7 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Noh, H., Shoemaker, J. E. & Gunawan, R. Community perturbation evaluation of gene transcriptional profiles reveals protein targets and mechanism of motion of medicine and influenza A viral an infection. Nucleic Acids Res. 46, e34 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gardner, T. S., Bernardo, D., di, Lorenz, D. & Collins, J. J. Inferring genetic networks and figuring out compound mode of motion by way of expression profiling. Science 301, 102–105 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shaw, D., Hermoso, A., Lluch-Senar, M. & Serrano, L. Comparative gene essentiality throughout the bacterial area. Preprint at bioRxiv https://doi.org/10.1101/2020.02.28.969238 (2020).

  • Bakheet, T. M. & Doig, A. J. Properties and identification of antibiotic drug targets. BMC Bioinf. 11, 195 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kauppi, A. M., Nordfelth, R., Uvell, H., Wolf-Watz, H. & Elofsson, M. Concentrating on bacterial virulence: inhibitors of kind III secretion in Yersinia. Chem. Biol. 10, 241–249 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dong, Y. H. et al. Quenching quorum-sensing-dependent bacterial an infection by an N-acyl homoserine lactonase. Nature 411, 813–817 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gifford, A. H. et al. Use of a multiplex transcript technique for evaluation of Pseudomonas aeruginosa gene expression profiles within the cystic fibrosis lung. Infect. Immun. 84, 2995–3006 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Budzik, J. M. et al. Dynamic post-translational modification profiling of Mycobacterium tuberculosis-infected major macrophages. eLife 9, e51461 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ejim, L. et al. Combos of antibiotics and nonantibiotic medication improve antimicrobial efficacy. Nat. Chem. Biol. 7, 348–350 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rustad, T. R. et al. Mapping and manipulating the Mycobacterium tuberculosis transcriptome utilizing a transcription issue overexpression-derived regulatory community. Genome Biol. 15, 502 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bina, J. et al. ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera sufferers. Proc. Natl Acad. Sci. USA 100, 2801–2806 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rosenberg, G. et al. Host succinate is an activation sign for Salmonella virulence throughout intracellular an infection. Science https://doi.org/10.1126/science.aba8026 (2021).

  • Tattoli, I. et al. Amino acid hunger induced by invasive bacterial pathogens triggers an innate host protection program. Cell Host Microbe 11, 563–575 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barber, M. F. & Elde, N. C. Escape from bacterial iron piracy by way of fast evolution of transferrin. Science 346, 1362–1366 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baran, R. et al. Metabolic footprinting of mutant libraries to map metabolite utilization to genotype. ACS Chem. Biol. 8, 189–199 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Øyås, O. et al. Mannequin-based integration of genomics and metabolomics reveals SNP performance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1915551117 (2020).

  • Bartell, J. A. et al. Reconstruction of the metabolic community of Pseudomonas aeruginosa to interrogate virulence issue synthesis. Nat. Commun. 8, 14631 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Großeholz, R. et al. Integrating extremely quantitative proteomics and genome-scale metabolic modeling to review pH adaptation within the human pathogen Enterococcus faecalis. NPJ Syst. Biol. Appl. 2, 16017 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bordbar, A., Lewis, N. E., Schellenberger, J., Palsson, B. O. & Jamshidi, N. Perception into human alveolar macrophage and M. tuberculosis interactions by way of metabolic reconstructions. Mol. Syst. Biol. 6, 422 (2010).

  • Zimmermann, M. et al. Integration of metabolomics and transcriptomics reveals a posh food regimen of Mycobacterium tuberculosis throughout early macrophage an infection. mSystems 2, e00057-07 (2017).

    Article 

    Google Scholar
     

  • Sarigul, N., Korkmaz, F. & Kurultak, İ. A brand new synthetic urine protocol to raised imitate human urine. Sci. Rep. 9, 20159 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fernández-García, M. et al. Complete examination of the mouse lung metabolome following Mycobacterium tuberculosis an infection utilizing a multiplatform mass spectrometry strategy. J. Proteome Res. 19, 2053–2070 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zlitni, S., Ferruccio, L. F. & Brown, E. D. Metabolic suppression identifies new antibacterial inhibitors beneath nutrient limitation. Nat. Chem. Biol. 9, 796–804 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hasenoehrl, E. J. et al. Derailing the aspartate pathway of Mycobacterium tuberculosis to eradicate persistent an infection. Nat. Commun. 10, 4215 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Raby, A.-C. et al. Concentrating on the TLR co-receptor CD14 with TLR2-derived peptides modulates immune responses to pathogens. Sci. Transl. Med. 5, 185ra64–185ra64 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ma, S. et al. Transcriptional regulator-induced phenotype display screen reveals drug potentiators in Mycobacterium tuberculosis. Nat. Microbiol. 6, 44–50 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stokes, J. M. et al. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nat. Microbiol. 2, 17028 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chandrasekaran, S. et al. Chemogenomics and orthology‐based mostly design of antibiotic mixture therapies. Mol. Syst. Biol. 12, 872 (2016).

  • Lukačišin, M. & Bollenbach, T. Emergent gene expression responses to drug mixtures predict higher-order drug interactions. Cell Syst. 9, 423–433.e3 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ma, S. et al. Transcriptomic signatures predict regulators of drug synergy and medical routine efficacy in opposition to tuberculosis. mBio 10, e02627–19 (2019). The authors used a machine studying strategy to display screen in silico greater than 1 million potential drug mixtures utilizing Mycobacterium tuberculosis transcriptomic profiles of particular person drug results, ensuing mechanistic insights on drug–drug interactions.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopatkin, A. J. et al. Clinically related mutations in core metabolic genes confer antibiotic resistance. Science 371, eaba0862 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schrader, S. M. et al. Multiform antimicrobial resistance from a metabolic mutation. Sci. Adv. 7, eabh2037 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weis, C. et al. Direct antimicrobial resistance prediction from medical MALDI–TOF mass spectra utilizing machine studying. Nat. Med. https://doi.org/10.1038/s41591-021-01619-9 (2022).

  • Zampieri, M. et al. Metabolic constraints on the evolution of antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Stone, L. Okay. et al. Compounds that choose in opposition to the tetracycline-resistance efflux pump. Nat. Chem. Biol. 12, 902–904 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Blondiaux, N. et al. Reversion of antibiotic resistance in Mycobacterium tuberculosis by spiroisoxazoline SMARt-420. Science 355, 1206–1211 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khaledi, A. et al. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Mol. Med. 12, e10264 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dunphy, L. J., Yen, P. & Papin, J. A. Built-in experimental and computational analyses reveal differential metabolic performance in antibiotic-resistant Pseudomonas aeruginosa. Cell Syst. 8, e3 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Santi, I., Manfredi, P., Maffei, E., Egli, A. & Jenal, U. Evolution of antibiotic tolerance shapes resistance growth in power Pseudomonas aeruginosa infections. mBio 12, e03482–20 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van den Bergh, B. et al. Frequency of antibiotic utility drives fast evolutionary adaptation of Escherichia coli persistence. Nat. Microbiol. 1, 1–7 (2016).


    Google Scholar
     

  • Maynard, A. et al. Antibiotic Korormicin A kills micro organism by producing reactive oxygen species. J. Bacteriol. 201, e00718–e00718 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu, J., Gefen, O., Ronin, I., Bar-Meir, M. & Balaban, N. Q. Impact of tolerance on the evolution of antibiotic resistance beneath drug mixtures. Science 367, 200–204 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Duran-Frigola, M. et al. Extending the small-molecule similarity precept to all ranges of biology with the Chemical Checker. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0502-7 (2020).

  • RELATED ARTICLES

    Most Popular

    Recent Comments