Lusis, A. J. Atherosclerosis. Nature 407, 233–241 (2000).
Weber, C. & Noels, H. Atherosclerosis: Present pathogenesis and therapeutic choices. Nat. Med. 17, 1410–1422 (2011).
Bom, M. J. et al. Early detection and remedy of the weak coronary plaque: Can we forestall acute coronary syndromes?. Circ. Cardiovasc. Imaging 10, e005973 (2017).
Stefanadis, C., Antoniou, C., Tsiachris, D. & Pietri, P. Coronary atherosclerotic weak plaque: Present views. J. Am. Coronary heart Assoc. 6, e005543 (2017).
Sharma, A. & Arbab-Zadeh, A. Detection of the weak coronary atherosclerotic plaque-promises and limitations. Curr. Cardiovasc. Imaging Rep. 10, 1–6 (2017).
Fleg, J. L. et al. Detection of high-risk atherosclerotic plaque: Report of the NHLBI Working Group on present standing and future instructions. JACC Cardiovasc. Imaging 5, 941–955 (2012).
Virmani, R. et al. Atherosclerotic plaque development and vulnerability to rupture: Angiogenesis as a supply of intraplaque hemorrhage. Arterioscler. Thromb. Vasc. Biol. 25, 2054–2061 (2005).
Narula, J. & Strauss, H. W. Imaging of unstable atherosclerotic lesions. Eur. J. Nucl. Med. Mol. Imaging 32, 1–5 (2005).
Puri, R., Worthley, M. I. & Nicholls, S. J. Intravascular imaging of weak coronary plaque: Present and future ideas. Nat. Rev. Cardiol. 8, 131–139 (2011).
Moreno, P. R. et al. Detection of lipid pool, skinny fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 105, 923–927 (2002).
Kolodgie, F. D. et al. The skinny-cap fibroatheroma: A kind of weak plaque: The key precursor lesion to acute coronary syndromes. Curr. Opin. Cardiol. 16, 285–292 (2001).
Baldewsing, R. A. et al. Intravascular ultrasound elastography: A clinician’s instrument for assessing vulnerability and materials composition of plaques. Stud. Well being Technol. Inform. 113, 75–96 (2005).
de Korte, C. L. & van der Steen, A. F. Intravascular ultrasound elastography: An outline. Ultrasonics 40, 859–865 (2002).
de Korte, C. L. et al. Identification of atherosclerotic plaque elements with intravascular ultrasound elastography in vivo: A Yucatan pig examine. Circulation 105, 1627–1630 (2002).
Allen, J. D. et al. The event and potential of acoustic radiation pressure impulse (ARFI) imaging for carotid artery plaque characterization. Vasc. Med. 16, 302–311 (2011).
Sawada, T. et al. Feasibility of mixed use of intravascular ultrasound radiofrequency information evaluation and optical coherence tomography for detecting thin-cap fibroatheroma. Eur. Coronary heart J. 29, 1136–1146 (2008).
Waxman, S., Ishibashi, F. & Muller, J. E. Detection and remedy of weak plaques and weak sufferers: Novel approaches to prevention of coronary occasions. Circulation 114, 2390–2411 (2006).
Yoo, H. et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat. Med. 17, 1680–1684 (2011).
Villiger, M., Karanasos, A., Ren, J., Lippok, N., Shishkov, M., van Soest, G., Nadkarni, S., Regar, E. & Bouma, B. Intravascular polarization delicate optical coherence tomography in human sufferers. 2016 Convention on Lasers and Electro-Optics (Cleo) (2016).
Cilingiroglu, M. et al. Detection of weak plaque in a murine mannequin of athereosclerosis with optical coherence tomography. Catheter. Cardiovasc. Interv. 67, 915–923 (2006).
Tearney, G. J., Jang, I. Ok. & Bouma, B. E. Optical coherence tomography for imaging weak plaque. J. Biomed. Decide. 11, 021002 (2006).
Karlsson, S. et al. Intracoronary near-infrared spectroscopy and the danger of future cardiovascular occasions. Open Coronary heart 6, e000917 (2019).
Madder, R. D. et al. Multimodality intracoronary imaging with near-infrared spectroscopy and intravascular ultrasound in asymptomatic people with excessive calcium scores. Circ. Cardiovasc. Imaging 10, e006282 (2017).
Hoang, V. et al. The position of intracoronary plaque imaging with intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy in sufferers with coronary artery illness. Curr. Atheroscler. Rep. 18, 57 (2016).
Calfon, M. A. et al. In vivo close to infrared fluorescence (NIRF) intravascular molecular imaging of inflammatory plaque, a multimodal method to imaging of atherosclerosis. J. Vis. Exp. 54, e2257 (2011).
Hara, T. & Jaffer, F. A. Intravascular NIRF molecular imaging approaches in coronary artery illness. Curr. Cardiovasc. Imaging Rep. 9, 1–8 (2016).
Li, Y. et al. Absolutely built-in optical coherence tomography, ultrasound, and indocyanine green-based fluorescence tri-modality system for intravascular imaging. Biomed. Decide. Categorical 8, 1036–1044 (2017).
Wei, W., Li, X., Zhou, Q. F., Shung, Ok. Ok. & Chen, Z. P. Built-in ultrasound and photoacoustic probe for co-registered intravascular imaging. J. Biomed. Decide. 16, 106001 (2011).
Yuan, Y., Yang, S. & Xing, D. Preclinical photoacoustic imaging endoscope based mostly on acousto-optic coaxial system utilizing ring transducer array. Decide. Lett. 35, 2266–2268 (2010).
Ji, X. R., Xiong, Ok. D., Yang, S. H. & Xing, D. Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer. Decide. Categorical 23, 9130–9136 (2015).
Yang, J. M. et al. Photoacoustic endoscopy. Decide. Lett. 34, 1591–1593 (2009).
Li, Y. et al. Excessive-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter. J. Biomed. Decide. 20, 065006 (2015).
de Boer, J. F. et al. Polarization results in optical coherence tomography of varied organic tissues. IEEE J. Sel. High. Quant. 5, 1200–1204 (1999).
De Boer, J., Srinivas, S., Malekafzali, A., Chen, Z. & Nelson, J. Imaging thermally broken tissue by polarization delicate optical coherence tomography. Decide. Categorical 3, 212–218 (1998).
Villiger, M. et al. Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency area imaging. Decide. Categorical 21, 16353–16369 (2013).
Otsuka, Ok., Villiger, M., Nadkarni, S. Ok. & Bouma, B. E. Intravascular polarimetry: Scientific translation and future functions of catheter-based polarization delicate optical frequency area imaging. Entrance. Cardiovasc. Med. 7, 146 (2020).
Villiger, M. et al. Coronary plaque microstructure and composition modify optical polarization: A brand new endogenous distinction mechanism for optical frequency area imaging. JACC Cardiovasc. Imaging 11, 1666–1676 (2018).
Moon, S., Miao, Y. & Chen, Z. Fiber-based polarization-sensitive optical coherence tomography of a minimalistic system configuration. Decide. Lett. 44, 3150–3153 (2019).
Li, Y. et al. Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser. Sci. Rep. 7, 14525 (2017).
Li, Y. et al. 1.7 micron optical coherence tomography for vaginal tissue characterization in vivo. Lasers Surg. Med. 51, 120–126 (2019).
Li, Y. et al. 1.7-micron optical coherence tomography angiography for characterization of pores and skin lesions—A feasibility examine. IEEE Trans. Med. Imaging 40, 2507–2512 (2021).
Li, Y. Improvement and Translation of Multimodal Microscopic and Endoscopic Biomedical Imaging Applied sciences (College of California, 2020).
Wang, T. et al. Intravascular optical coherence tomography imaging at 3200 frames per second. Decide. Lett. 38, 1715–1717 (2013).
Li, Y. & Chen, Z. Multimodal intravascular photoacoustic and ultrasound imaging. Biomed. Eng. Lett. 8, 193–201 (2018).
Li, Y., Chen, J. & Chen, Z. Multimodal intravascular imaging know-how for characterization of atherosclerosis. J. Innov. Decide. Well being Sci. 13, 2030001 (2020).