Sonntag, Mai 22, 2022
StartHealth ScienceIntravascular polarization-sensitive optical coherence tomography based mostly on polarization mode delay

Intravascular polarization-sensitive optical coherence tomography based mostly on polarization mode delay


  • Lusis, A. J. Atherosclerosis. Nature 407, 233–241 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weber, C. & Noels, H. Atherosclerosis: Present pathogenesis and therapeutic choices. Nat. Med. 17, 1410–1422 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bom, M. J. et al. Early detection and remedy of the weak coronary plaque: Can we forestall acute coronary syndromes?. Circ. Cardiovasc. Imaging 10, e005973 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Stefanadis, C., Antoniou, C., Tsiachris, D. & Pietri, P. Coronary atherosclerotic weak plaque: Present views. J. Am. Coronary heart Assoc. 6, e005543 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sharma, A. & Arbab-Zadeh, A. Detection of the weak coronary atherosclerotic plaque-promises and limitations. Curr. Cardiovasc. Imaging Rep. 10, 1–6 (2017).

    Article 

    Google Scholar
     

  • Fleg, J. L. et al. Detection of high-risk atherosclerotic plaque: Report of the NHLBI Working Group on present standing and future instructions. JACC Cardiovasc. Imaging 5, 941–955 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Virmani, R. et al. Atherosclerotic plaque development and vulnerability to rupture: Angiogenesis as a supply of intraplaque hemorrhage. Arterioscler. Thromb. Vasc. Biol. 25, 2054–2061 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Narula, J. & Strauss, H. W. Imaging of unstable atherosclerotic lesions. Eur. J. Nucl. Med. Mol. Imaging 32, 1–5 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Puri, R., Worthley, M. I. & Nicholls, S. J. Intravascular imaging of weak coronary plaque: Present and future ideas. Nat. Rev. Cardiol. 8, 131–139 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Moreno, P. R. et al. Detection of lipid pool, skinny fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 105, 923–927 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • Kolodgie, F. D. et al. The skinny-cap fibroatheroma: A kind of weak plaque: The key precursor lesion to acute coronary syndromes. Curr. Opin. Cardiol. 16, 285–292 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baldewsing, R. A. et al. Intravascular ultrasound elastography: A clinician’s instrument for assessing vulnerability and materials composition of plaques. Stud. Well being Technol. Inform. 113, 75–96 (2005).

    PubMed 

    Google Scholar
     

  • de Korte, C. L. & van der Steen, A. F. Intravascular ultrasound elastography: An outline. Ultrasonics 40, 859–865 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • de Korte, C. L. et al. Identification of atherosclerotic plaque elements with intravascular ultrasound elastography in vivo: A Yucatan pig examine. Circulation 105, 1627–1630 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • Allen, J. D. et al. The event and potential of acoustic radiation pressure impulse (ARFI) imaging for carotid artery plaque characterization. Vasc. Med. 16, 302–311 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sawada, T. et al. Feasibility of mixed use of intravascular ultrasound radiofrequency information evaluation and optical coherence tomography for detecting thin-cap fibroatheroma. Eur. Coronary heart J. 29, 1136–1146 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Waxman, S., Ishibashi, F. & Muller, J. E. Detection and remedy of weak plaques and weak sufferers: Novel approaches to prevention of coronary occasions. Circulation 114, 2390–2411 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Yoo, H. et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat. Med. 17, 1680–1684 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Villiger, M., Karanasos, A., Ren, J., Lippok, N., Shishkov, M., van Soest, G., Nadkarni, S., Regar, E. & Bouma, B. Intravascular polarization delicate optical coherence tomography in human sufferers. 2016 Convention on Lasers and Electro-Optics (Cleo) (2016).

  • Cilingiroglu, M. et al. Detection of weak plaque in a murine mannequin of athereosclerosis with optical coherence tomography. Catheter. Cardiovasc. Interv. 67, 915–923 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Tearney, G. J., Jang, I. Ok. & Bouma, B. E. Optical coherence tomography for imaging weak plaque. J. Biomed. Decide. 11, 021002 (2006).

    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Karlsson, S. et al. Intracoronary near-infrared spectroscopy and the danger of future cardiovascular occasions. Open Coronary heart 6, e000917 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Madder, R. D. et al. Multimodality intracoronary imaging with near-infrared spectroscopy and intravascular ultrasound in asymptomatic people with excessive calcium scores. Circ. Cardiovasc. Imaging 10, e006282 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Hoang, V. et al. The position of intracoronary plaque imaging with intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy in sufferers with coronary artery illness. Curr. Atheroscler. Rep. 18, 57 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Calfon, M. A. et al. In vivo close to infrared fluorescence (NIRF) intravascular molecular imaging of inflammatory plaque, a multimodal method to imaging of atherosclerosis. J. Vis. Exp. 54, e2257 (2011).


    Google Scholar
     

  • Hara, T. & Jaffer, F. A. Intravascular NIRF molecular imaging approaches in coronary artery illness. Curr. Cardiovasc. Imaging Rep. 9, 1–8 (2016).

    Article 

    Google Scholar
     

  • Li, Y. et al. Absolutely built-in optical coherence tomography, ultrasound, and indocyanine green-based fluorescence tri-modality system for intravascular imaging. Biomed. Decide. Categorical 8, 1036–1044 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei, W., Li, X., Zhou, Q. F., Shung, Ok. Ok. & Chen, Z. P. Built-in ultrasound and photoacoustic probe for co-registered intravascular imaging. J. Biomed. Decide. 16, 106001 (2011).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Yuan, Y., Yang, S. & Xing, D. Preclinical photoacoustic imaging endoscope based mostly on acousto-optic coaxial system utilizing ring transducer array. Decide. Lett. 35, 2266–2268 (2010).

    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Ji, X. R., Xiong, Ok. D., Yang, S. H. & Xing, D. Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer. Decide. Categorical 23, 9130–9136 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Yang, J. M. et al. Photoacoustic endoscopy. Decide. Lett. 34, 1591–1593 (2009).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Li, Y. et al. Excessive-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter. J. Biomed. Decide. 20, 065006 (2015).

    PubMed 
    ADS 

    Google Scholar
     

  • de Boer, J. F. et al. Polarization results in optical coherence tomography of varied organic tissues. IEEE J. Sel. High. Quant. 5, 1200–1204 (1999).

    Article 

    Google Scholar
     

  • De Boer, J., Srinivas, S., Malekafzali, A., Chen, Z. & Nelson, J. Imaging thermally broken tissue by polarization delicate optical coherence tomography. Decide. Categorical 3, 212–218 (1998).

    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Villiger, M. et al. Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency area imaging. Decide. Categorical 21, 16353–16369 (2013).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Otsuka, Ok., Villiger, M., Nadkarni, S. Ok. & Bouma, B. E. Intravascular polarimetry: Scientific translation and future functions of catheter-based polarization delicate optical frequency area imaging. Entrance. Cardiovasc. Med. 7, 146 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Villiger, M. et al. Coronary plaque microstructure and composition modify optical polarization: A brand new endogenous distinction mechanism for optical frequency area imaging. JACC Cardiovasc. Imaging 11, 1666–1676 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Moon, S., Miao, Y. & Chen, Z. Fiber-based polarization-sensitive optical coherence tomography of a minimalistic system configuration. Decide. Lett. 44, 3150–3153 (2019).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Li, Y. et al. Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser. Sci. Rep. 7, 14525 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Y. et al. 1.7 micron optical coherence tomography for vaginal tissue characterization in vivo. Lasers Surg. Med. 51, 120–126 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, Y. et al. 1.7-micron optical coherence tomography angiography for characterization of pores and skin lesions—A feasibility examine. IEEE Trans. Med. Imaging 40, 2507–2512 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Li, Y. Improvement and Translation of Multimodal Microscopic and Endoscopic Biomedical Imaging Applied sciences (College of California, 2020).


    Google Scholar
     

  • Wang, T. et al. Intravascular optical coherence tomography imaging at 3200 frames per second. Decide. Lett. 38, 1715–1717 (2013).

    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Li, Y. & Chen, Z. Multimodal intravascular photoacoustic and ultrasound imaging. Biomed. Eng. Lett. 8, 193–201 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, Y., Chen, J. & Chen, Z. Multimodal intravascular imaging know-how for characterization of atherosclerosis. J. Innov. Decide. Well being Sci. 13, 2030001 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments