Sonntag, Juli 31, 2022
StartHealth ScienceiTRAQ proteomics of sentinel lymph nodes for identification of extracellular matrix proteins...

iTRAQ proteomics of sentinel lymph nodes for identification of extracellular matrix proteins to flag metastasis in early breast most cancers


  • Wu, H. et al. Isobaric tags for relative and absolute quantitation in proteomic evaluation of potential biomarkers in invasive most cancers, ductal carcinoma in situ, and mammary fibroadenoma. Entrance. Oncol. 10, 574552 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • IARC. New World Most cancers Knowledge: GLOBOCAN 2020. Int. Company Res. Most cancers 6 (2020).

  • WHO. Globocan 2020. Worldwide Company for analysis vol. 419 3–4 https://ascopost.com/information/december-2020/globocan-2020-database-provides-latest-global-data-on-cancer-burden-cancer-deaths/#:~:textual content=Feminine breast most cancers has now, with 685percent2C000 deaths in 2020. (2020).

  • Sofi, N., Jain, M., Kapil, U. & Yadav, C. Epidemiological traits of breast most cancers sufferers attending a tertiary health-care institute within the Nationwide Capital Territory of India. J. Most cancers Res. Ther. 15, 1087–1091 (2019).

    PubMed 

    Google Scholar
     

  • Heer, E. et al. World burden and traits in premenopausal and postmenopausal breast most cancers: A population-based research. Lancet Glob. Heal. 8, e1027–e1037 (2020).


    Google Scholar
     

  • Schwartz, R. S. & Erban, J. Okay. Timing of metastasis in breast most cancers. N. Engl. J. Med. 376, 2486–2488 (2017).

    PubMed 

    Google Scholar
     

  • Bray, F. et al. World most cancers statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA. Most cancers J. Clin. 68, 394–424 (2018).

    PubMed 

    Google Scholar
     

  • Weledji, E. P. & Tambe, J. Breast most cancers detection and screening. Med. Clin. Rev. https://doi.org/10.21767/2471-299X.1000071 (2018).

    Article 

    Google Scholar
     

  • Qiu, Y. et al. A a number of breast most cancers stem cell mannequin to foretell recurrence of T1–3, N0 breast most cancers. BMC Most cancers 19, 729 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brenot-Rossi, I. et al. Nonvisualization of axillary sentinel node throughout lymphoscintigraphy: Is there a pathologic significance in breast most cancers?. J. Nucl. Med. 44, 1232–1237 (2003).

    PubMed 

    Google Scholar
     

  • Gradishar, W. J. et al. Scientific observe pointers in oncology. JNCCN J. Natl. Compr. Most cancers Netw. 16, 310–320 (2018).


    Google Scholar
     

  • Kelley, M. C., Hansen, N. & McMasters, Okay. M. Lymphatic mapping and sentinel lymphadenectomy for breast most cancers. Am. J. Surg. 188, 49–61 (2004).

    PubMed 

    Google Scholar
     

  • Krag, D. N., Weaver, D. L., Alex, J. C. & Fairbank, J. T. Surgical resection and radiolocalization of the sentinel lymph node in breast most cancers utilizing a gamma probe. Surg. Oncol. 2, 335–340 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Noguchi, M. et al. The position of axillary lymph node dissection in breast most cancers administration. Breast Most cancers 4, 143–153 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Erb, Okay. M. & Julian, T. B. Completion of axillary dissection for a optimistic sentinel node: Needed or not?. Curr. Oncol. Rep. 11, 15–20 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borgstein, P. J. et al. Sentinel lymph node biopsy in breast most cancers: Tips and pitfalls of lymphoscintigraphy and gamma probe detection. J. Am. Coll. Surg. 186, 275–283 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast most cancers. N. Engl. J. Med. 347, 1999–2009 (2002).

    PubMed 

    Google Scholar
     

  • Lorusso, G. & Rüegg, C. New insights into the mechanisms of organ-specific breast most cancers metastasis. Semin. Most cancers Biol. 22, 226–233 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Fry, S. A., Sinclair, J., Timms, J. F., Leathem, A. J. & Dwek, M. V. A focused glycoproteomic method identifies cadherin-5 as a novel biomarker of metastatic breast most cancers. Most cancers Lett. 328, 335–344 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, L. et al. Identification of nucleobindin-2 as a possible biomarker for breast most cancers metastasis utilizing iTRAQ-based quantitative proteomic evaluation. J. Most cancers. 8, 3062–3069 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mokhtar, M. et al. Triple evaluation of sentinel lymph node metastasis in early breast most cancers utilizing preoperative CTLG, intraoperative fluorescence navigation and OSNA. Breast Most cancers 23, 202–210 (2016).

    PubMed 

    Google Scholar
     

  • Zhao, Q. L. et al. Elastosonography and two-dimensional ultrasonography in analysis of axillary lymph node metastasis in breast most cancers. Clin. Radiol. 73, 312–318 (2018).

    PubMed 

    Google Scholar
     

  • Solon, J. G., Energy, C., Al-Azawi, D., Duke, D. & Hill, A. D. Okay. Ultrasound-guided core biopsy: An efficient methodology of detecting axillary nodal metastases. J. Am. Coll. Surg. 214, 12–17 (2012).

    PubMed 

    Google Scholar
     

  • Nandu, V. V. & Chaudhari, M. S. Efficacy of sentinel lymph node biopsy in detecting axillary metastasis in breast most cancers utilizing methylene blue. Indian J. Surg. Oncol. 8, 109–112 (2017).

    PubMed 

    Google Scholar
     

  • Harada, T., Tanigawa, N., Matsuki, M., Nohara, T. & Narabayashi, I. Analysis of lymph node metastases of breast most cancers utilizing ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging. Eur. J. Radiol. 63, 401–407 (2007).

    PubMed 

    Google Scholar
     

  • Roumen, R. M. H., Valkenburg, J. G. M. & Geuskens, L. M. Lymphoscintigraphy and feasibility of sentinel node biopsy in 83 sufferers with main breast most cancers. Eur. J. Surg. Oncol. 23, 495–502 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Gupta, A. Okay. et al. Cerebrospinal fluid proteomics for identification of α2-macroglobulin as a possible biomarker to observe pharmacological therapeutic efficacy in dopamine dictated illness states of Parkinson’s illness and schizophrenia. Neuropsychiatr. Dis. Deal with. 15, 2853–2867 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pokhriyal, R., Hariprasad, R., Kumar, L. & Hariprasad, G. Chemotherapy resistance in superior ovarian most cancers sufferers. Biomark. Most cancers. 11, 1179299X1986081 (2019).


    Google Scholar
     

  • Pathania, S. et al. Proteomics of sentinel lymph nodes in early breast most cancers for identification of thymidylate synthase as a possible biomarker to flag metastasis: A preliminary research. Most cancers Manag. Res. 12, 4841–4854 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kataria, Okay., Srivastava, A. & Qaiser, D. What Is a false destructive sentinel node biopsy: Definition, causes and methods to reduce it?. Indian J. Surg. 78, 396–401 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orsburn, B. C. Proteome discoverer-a group enhanced knowledge processing suite for protein informatics. Proteomes 9, 1–13 (2021).


    Google Scholar
     

  • Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative evaluation of huge gene lists utilizing DAVID bioinformatics sources. Nat. Protoc. 4, 44–57 (2009).

    CAS 

    Google Scholar
     

  • Pang, Z. et al. MetaboAnalyst 5.0: Narrowing the hole between uncooked spectra and purposeful insights. Nucleic Acids Res. 49, W388–W396 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamradt, M. C., Chen, F. & Cryns, V. L. The small warmth shock protein αB-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J. Biol. Chem. 276, 16059–16063 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Mao, Y. W., Liu, J. P., Xiang, H. & Li, D. W. C. Human αA- and αB-crystallins bind to Bax and Bcl-Xs to sequester their translocation throughout staurosporine-induced apoptosis. Cell Dying Differ. 11, 512–526 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. As a novel p53 direct goal, bidirectional gene HspB2/αB-crystallin regulates the ROS stage and Warburg impact. Biochim. Biophys. Acta – Gene Regul. Mech. 1839, 592–603 (2014).

    CAS 

    Google Scholar
     

  • Shi, C. et al. Alpha B-crystallin correlates with poor survival in colorectal most cancers. Int. J. Clin. Exp. Pathol. 7, 6056–6063 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mellone, M. et al. Induction of fibroblast senescence generates a non-fibrogenic myofibroblast phenotype that differentially impacts on most cancers prognosis. Ageing (Albany NY). 9, 114–132 (2017).

    CAS 

    Google Scholar
     

  • Hanley, C. J. et al. A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation, which is prognostic in a number of cancers. Oncotarget 7, 6159–6174 (2016).

    PubMed 

    Google Scholar
     

  • Li, Y. et al. miR-181a-5p inhibits most cancers cell migration and angiogenesis by way of downregulation of matrix metalloproteinase-14. Most cancers Res. 75, 2674–2685 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez-Avila, G. et al. Matrix metalloproteinases participation within the metastatic course of and their diagnostic and therapeutic functions in most cancers. Crit. Rev. Oncol. Hematol. 137, 57–83 (2019).

    PubMed 

    Google Scholar
     

  • Nieto, M. A., Huang, R. Y. Y. J., Jackson, R. A. A. & Thiery, J. P. P. Emt: 2016. Cell 166, 21–45 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Ju, Q. et al. Identification of a miRNA-mRNA community related to lymph node metastasis in colorectal most cancers. Oncol. Lett. 18, 1179–1188 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pike, L. J. Development issue receptors, lipid rafts and caveolae: An evolving story. Biochim. Biophys. Acta – Mol. Cell Res. 1746, 260–273 (2005).

    CAS 

    Google Scholar
     

  • Badana, A. Okay. et al. Lipid rafts disruption induces apoptosis by attenuating expression of LRP6 and survivin in triple destructive breast most cancers. Biomed. Pharmacother. 97, 359–368 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, R. et al. Caveolin-1 features as a key regulator of 17β-estradiol-mediated autophagy and apoptosis in BT474 breast most cancers cells. Int. J. Mol. Med. 34, 822–827 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Bailey, Okay. M. & Liu, J. Caveolin-1 up-regulation throughout epithelial to mesenchymal transition is mediated by focal adhesion kinase. J. Biol. Chem. 283, 13714–13724 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gai, X., Lu, Z., Tu, Okay., Liang, Z. & Zheng, X. Caveolin-1 is up-regulated by GLI1 and contributes to GLI1-driven EMT in hepatocellular carcinoma. PLoS One. 9, e84551 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joglekar, M., Elbazanti, W. O., Weitzman, M. D., Lehman, H. L. & van Golen, Okay. L. Erratum to: Caveolin-1 mediates inflammatory breast most cancers cell invasion by way of the Akt1 pathway and RhoC GTPase: RhoC and caveolin -1 in inflammatory breast most cancers. J. Cell. Biochem. 118, 1273 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Shear stress promotes anoikis resistance of most cancers cells by way of caveolin-1-dependent extrinsic and intrinsic apoptotic pathways. J. Cell. Physiol. 234, 3730–3743 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Okay., Zhu, X., Chen, Y., Yin, Y. & Ma, T. Tubeimoside V sensitizes human triple destructive breast most cancers MDA-MB-231 cells to anoikis by way of regulating caveolin-1-related signaling pathways. Arch. Biochem. Biophys. 646, 10–15 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. H. et al. Function of secreted kind I collagen derived from stromal cells in two breast most cancers cell traces. Oncol. Lett. 8, 507–512 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Collagen 1A1 (COL1A1) promotes metastasis of breast most cancers and is a possible therapeutic goal. Discov. Med. 25, 211–223 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • De Wever, O. & Mareel, M. Function of tissue stroma in most cancers cell invasion. Journal of Pathology. 200, 429–447 (2003).

    PubMed 

    Google Scholar
     

  • Zilberberg, L. et al. Specificity of latent TGF-β binding protein (LTBP) incorporation into matrix: Function of fibrillins and fibronectin. J. Cell. Physiol. 227, 3828–3836 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuxe, J., Vincent, T. & De Herreros, A. G. Transcriptional crosstalk between TGFβ and stem cell pathways in tumor cell invasion: Function of EMT selling Smad complexes. Cell Cycle 9, 2363–2374 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhury, A. et al. TGF-Β-mediated phosphorylation of hnRNP E1 induces EMT by way of transcript-selective translational induction of Dab2 and ILEI. Nat. Cell Biol. 12, 286–293 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Okay. et al. Glyceraldehyde-3-phosphate dehydrogenase promotes most cancers development and metastasis by way of upregulation of SNAIL expression. Int. J. Oncol. 50, 252–262 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Calderwood, S. Okay. & Gong, J. Warmth shock proteins promote most cancers: It’s a safety racket. Traits Biochem. Sci. 41, 311–323 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsutsumi, S., Beebe, Okay. & Neckers, L. Affect of heat-shock protein 90 on most cancers metastasis. Future Oncol. 5, 679–688 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Shiota, M. et al. Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate most cancers. Most cancers Res. 73, 3109–3119 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, W. H., Lee, B. L., Kim, D. Okay. & Kleinman, H. Okay. Laminin-1-adherent most cancers cells present elevated proliferation and decreased apoptosis in vivo. Anticancer Res. 19, 3067–3071 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Givant-Horwitz, V., Davidson, B. & Reich, R. Laminin-induced signaling in tumor cells. Most cancers Lett. 223, 1–10 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J. B. et al. Monoamine oxidase A mediates prostate tumorigenesis and most cancers metastasis. J. Clin. Make investments. 124, 2891–2908 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albig, A. R., Becenti, D. J., Roy, T. G. & Schiemann, W. P. Microfibril-associate glycoprotein-2 (MAGP-2) promotes angiogenic cell sprouting by blocking notch signaling in endothelial cells. Microvasc. Res. 76, 7–14 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. Built-in evaluation of microfibrillar-associated proteins reveals MFAP4 as a novel biomarker in human cancers. Epigenomics 11, 5–21 (2019).

    CAS 

    Google Scholar
     

  • Huang, Y., Arora, P., McCulloch, C. A. & Vogel, W. F. The collagen receptor DDR1 regulates cell spreading and motility by associating with myosin IIA. J. Cell Sci. 122, 1637–1646 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Arjonen, A. et al. Mutant p53.related myosin-X upregulation promotes breast most cancers invasion and metastasis. J. Clin. Make investments. 124, 1069–1082 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tirinato, L. et al. An outline of lipid droplets in most cancers and most cancers stem cells. Stem Cells Int. 2017, 1–17 (2017).


    Google Scholar
     

  • Chen, Y. F. et al. MicroRNA-211 enhances the oncogenicity of carcinogen-induced oral carcinoma by repressing TCF12 and rising antioxidant exercise. Most cancers Res. 76, 4872–4886 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Yu, H. et al. Transgelin is a direct goal of TGF-β/Smad3-dependent epithelial cell migration in lung fibrosis. FASEB J. 22, 1778–1789 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Y. et al. Affiliation of the actin-binding protein transgelin with lymph node metastasis in human colorectal most cancers. Neoplasia 11, 864–873 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X., Dong, L., Zhang, R., Ying, Okay. & Shen, H. Transgelin overexpression in lung adenocarcinoma is related to tumor development. Int. J. Mol. Med. 34, 585–591 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Borensztajn, Okay., Peppelenbosch, M. P. & Spek, C. A. Coagulation Issue Xa inhibits most cancers cell migration by way of LIMK1-mediated cofilin inactivation. Thromb. Res. 125, e323–e328 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Z. J. et al. Hnrnpab induces epithelial-mesenchymal transition and promotes metastasis of hepatocellular carcinoma by transcriptionally activating snail. Most cancers Res. 74, 2750–2762 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Stockley, J. et al. The RNA-binding protein hnRNPA2 regulates β-catenin protein expression and is overexpressed in prostate most cancers. RNA Biol. 11, 755–765 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, J. et al. Results of hnRNP A2/B1 knockdown on inhibition of glioblastoma cell invasion, development and survival. Mol. Neurobiol. 53, 1132–1144 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Tauler, J., Zudaire, E., Liu, H., Shih, J. & Mulshine, J. L. hnRNP A2/B1 modulates epithelial-mesenchymal transition in lung most cancers cell traces. Most cancers Res. 70, 7137–7147 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Bianchi, M. E. & Agresti, A. HMG proteins: Dynamic gamers in gene regulation and differentiation. Curr. Opin. Genet. Dev. 15, 496–506 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Medrzycki, M. et al. Histone H1.3 suppresses H19 noncoding RNA expression and cell development of ovarian most cancers cells. Most cancers Res. 74, 6463–6473 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Cathelicidin suppresses colon most cancers metastasis by way of a P2RX7-dependent mechanism. Mol. Ther. – Oncolytics. 12, 195–203 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, M. et al. miR-129-2 suppresses proliferation and migration of esophageal carcinoma cells by way of downregulation of SOX4 expression. Int. J. Mol. Med. 32, 51–58 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dransart, E., Olofsson, B. & Cherfils, J. RhoGDIs revisited: Novel roles in Rho regulation. Visitors 6, 957–966 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Hooper, J. A. et al. Purification and properties of Bovine Thymosin. Ann. N. Y. Acad. Sci. 249, 125–144 (1975).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, Y.-z, Chang, H., Ye, Y., Liu, J. & Wang, R. Thymosin α1 suppresses proliferation and induces apoptosis in human leukemia cell traces. Peptides 27(9), 2165–2173. https://doi.org/10.1016/j.peptides.2006.03.012 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Williams, T. M. & Lisanti, M. P. The caveolin proteins. Genome Biol. 5, 214 (2004).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. Endocytosis and membrane receptor internalization: Implication of F-BAR protein Carom. Entrance. Biosci. – Landmark. 22, 1439–1457 (2017).

    CAS 

    Google Scholar
     

  • Gajko-Galicka, A. Mutations in kind I collagen genes leading to osteogenesis imperfecta in people. Acta Biochim. Pol. 49, 433–441 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Gelse, Okay., Pöschl, E. & Aigner, T. Collagens – Construction, operate, and biosynthesis. Adv. Drug Deliv. Rev. 55, 1531–1546 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Paulin, D. & Li, Z. Desmin: A serious intermediate filament protein important for the structural integrity and performance of muscle. Exp. Cell Res. 301, 1–7 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah, S. B. et al. Structural and purposeful roles of desmin in mouse skeletal muscle throughout passive deformation. Biophys. J. 86, 2993–3008 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakai, L. Y., Keene, D. R., Renard, M. & De Backer, J. FBN1: The disease-causing gene for Marfan syndrome and different genetic issues. Gene 592, 279–291 (2016).


    Google Scholar
     

  • Schrenk, S., Cenzi, C., Bertalot, T., Conconi, M. T. & Di Liddo, R. Structural and purposeful failure of fibrillin-1 in human illnesses (Assessment). Int. J. Mol. Med. 41, 1213–1223 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Pilecki, B. et al. Characterization of microfibrillar-associated protein 4 (MFAP4) as a tropoelastin- and fibrillin-binding protein concerned in elastic fiber formation. J. Biol. Chem. 291, 1103–1114 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Kielty, C. M. Fell-Muir lecture: Fibrillin microfibrils: structural tensometers of elastic tissues?. Int. J. Exp. Pathol. 98, 172–190 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgado, F. N., da Silva, A. V. A. & Porrozzi, R. Infectious illnesses and the lymphoid extracellular matrix transforming: A concentrate on conduit system. Cells 9, 1–13 (2020).


    Google Scholar
     

  • Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A. & Fares, Y. Molecular rules of metastasis: A trademark of most cancers revisited. Sign Transduct. Goal. Ther. https://doi.org/10.1038/s41392-020-0134-x (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiig, H., Keskin, D. & Kalluri, R. Interplay between the extracellular matrix and lymphatics: Penalties for lymphangiogenesis and lymphatic operate. Matrix Biol. 29, 645–656 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaushik, S., Pickup, M. W. & Weaver, V. M. From transformation to metastasis: Deconstructing the extracellular matrix in breast most cancers. Most cancers Metastasis Rev. 35, 655–667 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkler, J., Abisoye-Ogunniyan, A., Metcalf, Okay. J. & Werb, Z. Ideas of extracellular matrix remodelling in tumour development and metastasis. Nat. Commun. 11, 1–17 (2020).


    Google Scholar
     

  • Ecker, B. L. et al. Age-related modifications in HAPLN1 improve lymphatic permeability and have an effect on routes of melanoma metastasis. Most cancers Discov. 9, 82–95 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Most cancers Cell 8, 241–254 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Frantz, C., Stewart, Okay. M. & Weaver, V. M. The extracellular matrix at a look. J. Cell Sci. 123, 4195–4200 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erdogan, B. & Webb, D. J. Most cancers-associated fibroblasts modulate development issue signaling and extracellular matrix transforming to control tumor metastasis. Biochem. Soc. Trans. 45, 229–236 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kortum, R. L. et al. Caveolin-1 is required for kinase suppressor of Ras 1 (KSR1)-mediated extracellular signal-regulated kinase 1/2 activation, H-Ras V12 -induced senescence, and transformation. Mol. Cell. Biol. 34, 3461–3472 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviors in pancreatic most cancers by regulating the PI3K/Akt signaling pathway. Cell Dying Dis. https://doi.org/10.1038/s41419-019-1320-z (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, P., Liu, Y. & Cheng, Z. Signaling pathways in cardiac myocyte apoptosis. Biomed. Res. Int. 2016, 1–22 (2016).


    Google Scholar
     

  • Mecham, R. P. & Gibson, M. A. The microfibril-associated glycoproteins (MAGPs) and the microfibrillar area of interest. Matrix Biol. 47, 13–33 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong, H. et al. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal most cancers cells. Neoplasia 10, 287–297 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deutsch, E. W. et al. The ProteomeXchange consortium in 2020: Enabling ‘massive knowledge’ approaches in proteomics. Nucleic Acids Res. 48, D1145–D1152 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments