Dienstag, August 2, 2022
StartMicrobiologyMetagenomic, (bio)chemical, and microscopic analyses reveal the potential for the biking of...

Metagenomic, (bio)chemical, and microscopic analyses reveal the potential for the biking of sulfated EPS in Shark Bay pustular mats


  • Hoffman P. Stromatolite morphogenesis in Shark Bay, Western Australia. In: Developments in sedimentology. Elsevier; 1976.261–71.

  • Golubic S, Hofmann HJ. Comparability of Holocene and Mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: Cell division and degradation. J Paleontol. 1976;50:1074–82.


    Google Scholar
     

  • Mlewski EC, Pisapia C, Gomez F, Lecourt L, Rueda ES, Benzerara Ok, et al. Characterization of pustular mats and associated Rivularia-rich laminations in oncoids from the Laguna Negra lake (Argentina). Entrance Microbiol. 2018;9:1–23.

    Article 

    Google Scholar
     

  • St Kendall C, Skipwith A. Latest algal mats of a Persian Gulf lagoon. SEPM J Sediment Res. 1968;38:1040–58.


    Google Scholar
     

  • Golubic S, Abed R. Entophysalis mats as environmental regulators. In: Microbial mats, trendy and historic microorganisms in stratified methods. Dordrecht: Springer; 2010.237–51.

  • Logan BW, Hoffman P, Gebelien CD. Algal mats, cryptalgal materials, and constructions, Hamelin Pool, Western Australia. Am Assoc Pet Geol. 1974;22:140–94.


    Google Scholar
     

  • Jahnert RJ, Collins LB. Controls on microbial exercise and tidal flat evolution in Shark Bay, Western Australia. Sedimentology. 2013;60:1071–99.

    Article 

    Google Scholar
     

  • Moore KR, Pajusalu M, Gong J, Sojo V, Matreux T, Braun D, et al. Biologically mediated silicification of marine cyanobacteria and implications for the Proterozoic fossil document. Geology. 2020;48:862–6.

    CAS 
    Article 

    Google Scholar
     

  • Decho AW, Visscher PT, Reid RP. Manufacturing and biking of pure microbial exopolymers (EPS) inside a marine stromatolite. Geobiology: goals, ideas, views. 2005;71–86.

  • Visscher PT, Dupont CL, Braissant O, Gallagher KL, Glunk C, Casillas L, et al. Biogeochemistry of carbon biking in hypersaline mats: Linking the current to the previous by means of biosignatures. In: Microbial mats, trendy and historic microorganisms in stratified methods. Dordrecht: Springer; 2010.443–68.

  • Ruvindy R, White RA, Neilan BA, Burns BP. Unravelling core microbial metabolisms within the hypersaline microbial mats of Shark Bay utilizing high-throughput metagenomics. ISME J. 2016;10:183–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stuart RK, Mayali X, Lee JZ, Craig Everroad R, Hwang M, Bebout BM, et al. Cyanobacterial reuse of extracellular natural carbon in microbial mats. ISME J. 2016;10:1240–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wong HL, White RA, Visscher PT, Charlesworth JC, Vázquez-Campos X, Burns BP. Disentangling the drivers of practical complexity on the metagenomic degree in Shark Bay microbial mat microbiomes. ISME J. 2018;12:2619–39.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Campbell MA, Coolen MJL, Visscher PT, Morris T, Grice Ok. Construction and performance of Shark Bay microbial communities following tropical cyclone Olwyn: a metatranscriptomic and natural geochemical perspective. Geobiology. 2021;19:642–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Braissant O, Decho AW, Przekop KM, Gallagher KL, Glunk C, Dupraz C, et al. Traits and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol Ecol. 2009;67:293–307.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cutts EM, Baldes MJ, Skoog EJ, Corridor J, Gong J, Moore KR, et al. Utilizing molecular instruments to know microbial carbonates. Geosciences 2022;12:185.

  • Moore KR, Gong J, Pajusalu M, Skoog EJ, Xu M, Soto Feliz T, et al. A brand new mannequin for silicification of cyanobacteria in Proterozoic tidal flats. Geobiology. 2021;19:438–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P. Complexity of cyanobacterial exopolysaccharides: composition, constructions, inducing elements and putative genes concerned of their biosynthesis and meeting. FEMS Microbiol Rev. 2009;33:917–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wingender J, Neu TR, Flemming H-C. Microbial extracellular polymeric substances. In: Microbial extracellular polymeric substances. Berlin, Heidelberg: Springer; 1999.1–19.

  • Sheng GP, Yu HQ, Li XY. Extracellular polymeric substances (EPS) of microbial aggregates in organic wastewater remedy methods: a assessment. Biotechnol Adv. 2010;28:882–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bar-Or Y, Shilo M. Characterization of macromolecular flocculants produced by Phormidium sp. Pressure J-1 and by Anabaenopsis circularis PCC 6720. Appl Environ Microbiol. 1987;53:2226–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sudo H, Burgess JG, Takemasa H, Nakamura N, Matsunaga T. Sulfated exopolysaccharide manufacturing by the halophilic cyanobacterium Aphanocapsa halophytia. Curr Microbiol. 1995;30:219–22.

    CAS 
    Article 

    Google Scholar
     

  • Witvrouw M, De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral medicine. Gen Pharmacol: The Vasc Syst. 1997;29:497–511.

    CAS 
    Article 

    Google Scholar
     

  • De Philippis R, Vincenzini M. Exocellular polysaccharides from cyanobacteria and their potential purposes. FEMS Microbiol Rev. 1998;22:151–75.

    Article 

    Google Scholar
     

  • Chen L, Li T, Guan L, Zhou Y, Li P. Flocculating actions of polysaccharides launched from the marine mat-forming cyanobacteria Microcoleus and Lyngbya. Aquat Biol. 2011;11:243–8.

    CAS 
    Article 

    Google Scholar
     

  • Wang L, Wang X, Wu H, Liu R. Overview on organic actions and molecular traits of sulfated polysaccharides from marine inexperienced algae lately. Marine Medicine. 2014;12:4984–5020.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hans N, Malik A, Naik S. Antiviral exercise of sulfated polysaccharides from marine algae and its utility in combating COVID-19: Mini assessment. Bioresour Technol Rep. 2021;13:100623.2020.

    PubMed 
    Article 

    Google Scholar
     

  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT. Exopolymeric substances of sulfate-reducing micro organism: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology. 2007;5:401–11.

    CAS 
    Article 

    Google Scholar
     

  • Barbeyron T, Brillet-Guéguen L, Carré W, Carrière C, Caron C, Czjzek M, et al. Matching the variety of sulfated biomolecules: Creation of a classification database for sulfatases reflecting their substrate specificity. PLoS ONE. 2016;11:1–33.

    Article 
    CAS 

    Google Scholar
     

  • Allen MA, Goh F, Burns BP, Neilan BA. Bacterial, archaeal and eukaryotic range of clean and pustular microbial mat communities within the hypersaline lagoon of Shark Bay. Geobiology. 2009;7:82–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goh F, Allen MA, Leuko S, Kawaguchi T, Decho AW, Burns BP, et al. Figuring out the precise microbial populations and their spatial distribution throughout the stromatolite ecosystem of Shark Bay. ISME J. 2009;3:383–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brody SS. New excited state of chlorophyll. Science. 1958;128:838–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lamb JJ, Røkke G, Hohmann-Marriott MF. Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 Ok. Photosynthetica. 2018;56:105–24.

    CAS 
    Article 

    Google Scholar
     

  • Hahn T, Schulz M, Stadtmüller R, Zayed A, Muffler Ok, Lang S, et al. Cationic dye for the precise willpower of sulfated polysaccharides. Anal Lett. 2016;49:1948–62.

    CAS 
    Article 

    Google Scholar
     

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a versatile trimmer for Illumina sequence information. Bioinformatics. 2014;30:2114–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li D, Liu CM, Luo R, Sadakane Ok, Lam TW. MEGAHIT: An ultra-fast single-node answer for giant and sophisticated metagenomics meeting through succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane Ok, et al. MEGAHIT v1.0: a quick and scalable metagenome assembler pushed by superior methodologies and neighborhood practices. Strategies. 2016;102:3–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an environment friendly instrument for precisely reconstructing single genomes from advanced microbial communities. PeerJ. 2015;3(e1165).

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the standard of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to categorise genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.

    CAS 

    Google Scholar
     

  • Huntemann M, Ivanova NN, Mavromatis Ok, James Tripp H, Paez-Espino D, Palaniappan Ok, et al. The usual working process of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4). Requirements in Genomic. Sciences. 2015;10:4–9.


    Google Scholar
     

  • Markowitz VM, Ivanova NN, Szeto E, Palaniappan Ok, Chu Ok, Dalevi D, et al. IMG/M: a knowledge administration and evaluation system for metagenomes. Nucleic Acids Res. 2007;36:534–8.SUPPL.1

    Article 
    CAS 

    Google Scholar
     

  • Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: a sophisticated evaluation and visualization platform for ‘omics information. PeerJ. 2015;3:e1319.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Exercise of considerable and uncommon micro organism in a coastal ocean. Proc Nationwide Acad Sci USA 2011;108:12776–81.

    CAS 
    Article 

    Google Scholar
     

  • Fukuda M, Hiraoka N, Akama TO, Fukuda MN. Carbohydrate-modifying sulfotransferases: Construction, perform, and pathophysiology. J Biol Chem. 2001;276:47747–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roeser D, Preusser-Kunze A, Schmidt B, Gasow Ok, Wittmann JG, Dierks T, et al. A normal binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc Natl Acad Sci USA 2006;103:81–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Genicot SM, Groisillier A, Rogniaux H, Meslet-Cladière L, Barbeyron T, Helbert W. Discovery of a novel iota carrageenan sulfatase remoted from the marine bacterium Pseudoalteromonas carrageenovora. Entrance Chem. 2014;2:1–15.

    CAS 
    Article 

    Google Scholar
     

  • Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves sign peptide predictions utilizing deep neural networks. Nat Biotechnol. 2019;37:420–3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fernando IPS, Sanjeewa KKA, Samarakoon KW, Lee WW, Kim HS, Kim EA, et al. FTIR characterization and antioxidant exercise of water soluble crude polysaccharides of Sri Lankan marine algae. Algae. 2017;32:75–86.

    CAS 
    Article 

    Google Scholar
     

  • Papineau D, Walker JJ, Mojzsis SJ, Tempo NR. Composition and construction of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol. 2005;71:4822–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wong HL, Smith DL, Visscher PT, Burns BP. Area of interest differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci Rep. 2015;5:1–17. 15607


    Google Scholar
     

  • Pereira SB, Mota R, Vieira CP, Vieira J, Tamagnini P. Phylum-wide evaluation of genes/proteins associated to the final steps of meeting and export of extracellular polymeric substances (EPS) in cyanobacteria. Sci Rep. 2015;5:1–16.

    CAS 

    Google Scholar
     

  • Rossi F, De Philippis R. Function of cyanobacterial exopolysaccharides in phototrophic biofilms and in advanced microbial mats. Life. 2015;5:1218–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McCandless EL, Craigie JS. Sulfated polysaccharides in purple and brown algae. Ann Rev Plant Physiol. 1979;30:41–53.

    CAS 
    Article 

    Google Scholar
     

  • Usov AI, Bilan MI. Fucoidans-sulfated polysaccharides of brown algae. Russ Chem Rev. 2009;78:785–99.

    CAS 
    Article 

    Google Scholar
     

  • Jiao G, Yu G, Zhang J, Ewart HS. Chemical constructions and bioactivities of sulfated polysaccharides from marine algae. Mar Medicine. 2011;9:196–233.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Al Disi ZA, Zouari N, Dittrich M, Jaoua S, Al-Kuwari HAS, Bontognali TRR. Characterization of the extracellular polymeric substances (EPS) of Virgibacillus strains able to mediating the formation of excessive Mg-calcite and protodolomite. Mar Chem. 2019;216:103693.

    CAS 
    Article 

    Google Scholar
     

  • Diloreto ZA, Garg S, Bontognali TRR, Dittrich M. Fashionable dolomite formation brought on by seasonal biking of oxygenic phototrophs and anoxygenic phototrophs in a hypersaline sabkha. Sci Rep. 2021;11:1–13.

    Article 
    CAS 

    Google Scholar
     

  • Richert L, Golubic S, Le Guédès R, Ratiskol J, Payri C, Guezennec J. Characterization of exopolysaccharides produced by cyanobacteria remoted from Polynesian microbial mats. Curr Microbiol. 2005;51:379–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raguénès G, Moppert X, Richert L, Ratiskol J, Payri C, Costa B, et al. A novel exopolymer-producing bacterium, Paracoccus zeaxanthinifaciens subsp. payriae, remoted from a “kopara” mat situated in Rangiroa, an atoll of French Polynesia. Curr Microbiol. 2004;49:145–51.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Moppert X, Le Costaouec T, Raguenes G, Courtois A, Simon-Colin C, Crassous P, et al. Investigations into the uptake of copper, iron and selenium by a extremely sulphated bacterial exopolysaccharide remoted from microbial mats. J Ind Microbiol Biotechnol. 2009;36:599–604.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • González-Hourcade M, del Campo EM, Braga MR, Salgado A, Casano LM. Disentangling the position of extracellular polysaccharides in desiccation tolerance in lichen-forming microalgae. First proof of sulfated polysaccharides and historic sulfotransferase genes. Environ Microbiol. 2020;22:3096–111.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • De Souza MCR, Marques CT, Dore CMG, Da Silva FRF, Rocha HAO, Leite EL. Antioxidant actions of sulfated polysaccharides from brown and purple seaweeds. J Appl Phycol. 2007;19:153–60.

    Article 
    CAS 

    Google Scholar
     

  • Jayawardena TU, Wang L, Asanka Sanjeewa KK, In Kang S, Lee JS, Jeon YJ. Antioxidant potential of sulfated polysaccharides from Padina boryana; protecting impact in opposition to oxidative stress in in vitro and in vivo zebrafish mannequin. Mar Medicine. 2020;18:1–14.


    Google Scholar
     

  • Baba M, Snoeck R, Pauwels R, De Clercq E. Sulfated polysaccharides are potent and selective inhibitors of varied enveloped viruses, together with herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Brokers Chemother. 1988;32:1742–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ghosh T, Chattopadhyay Ok, Marschall M, Karmakar P, Mandal P, Ray B. Give attention to antivirally lively sulfated polysaccharides: From structure-activity evaluation to scientific analysis. Glycobiology. 2009;19:2–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bakunina IY, Nedashkovskaya OI, Alekseeva SA, Ivanova EP, Romanenko LA, Gorshkova NM, et al. Degradation of fucoidan by the marine proteobacterium Pseudoalteromonas citrea. Mikrobiologiya. 2002;71:49–55.


    Google Scholar
     

  • Descamps V, Colin S, Lahaye M, Jam M, Richard C, Potin P, et al. Isolation and tradition of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar Biotechnol. 2006;8:27–39.

    CAS 
    Article 

    Google Scholar
     

  • Mann AJ, Hahnke RL, Huang S, Werner J, Xing P, Barbeyron T, et al. The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl Environ Microbiol. 2013;79:6813–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hehemann JH, Boraston AB, Czjzek M. A candy new wave: Constructions and mechanisms of enzymes that digest polysaccharides from marine algae. Curr Opin Struct Biol. 2014;28:77–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thomas F, Bordron P, Eveillard D, Michel G. Gene expression evaluation of Zobellia galactanivorans through the degradation of algal polysaccharides reveals each substrate-specific and shared transcriptome-wide responses. Entrance Microbiol. 2017;8:1–14.

    CAS 
    Article 

    Google Scholar
     

  • Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PSG, Reitenga KG, et al. Capturing single cell genomes of lively polysaccharide degraders: an surprising contribution of verrucomicrobia. PLoS ONE. 2012;7:1–11.


    Google Scholar
     

  • Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use lots of of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bengtsson MM, Øvreås L. Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol. 2010;10:1–12.

    Article 
    CAS 

    Google Scholar
     

  • Kim JW, Brawley SH, Prochnik S, Chovatia M, Grimwood J, Jenkins J, et al. Genome evaluation of Planctomycetes inhabiting blades of the purple alga Porphyra umbilicalis. PLoS ONE. 2016;11:1–22.


    Google Scholar
     

  • Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, et al. Full genome sequence of the marine planctomycete Pirellula sp. pressure 1. Proc Natl Acad Sci USA 2003;100:8298–303.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bayer Ok, Jahn MT, Slaby BM, Moitinho-Silva L, Hentschel U. Marine sponges as Chloroflexi scorching spots: Genomic insights and high-resolution visualization of an considerable and numerous symbiotic clade. mSystems. 2018;3:1–19.

    Article 

    Google Scholar
     

  • Robbins SJ, Music W, Engelberts JP, Glasl B, Slaby BM, Boyd J, et al. A genomic view of the microbiome of coral reef demosponges. ISME J. 2021;15:1641–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Salyers AA, O’Brien M. Mobile location of enzymes concerned in chondroitin sulfate breakdown by Bacteroides thetaiotaomicron. J Bacteriol. 1980;143:772–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Campbell MA, Grice Ok, Visscher PT, Morris T, Wong HL, White RA, et al. Useful gene expression in Shark Bay hypersaline microbial mats: adaptive responses. Entrance Microbiol. 2020;11:1–16.

    Article 

    Google Scholar
     

  • Van Vliet DM, Ayudthaya SPN, Diop S, Villanueva L, Stams AJM, Sánchez-Andrea I. Anaerobic degradation of sulfated polysaccharides by two novel Kiritimatiellales strains remoted from black sea sediment. Entrance Microbiol. 2019;10:1–16.

    Article 

    Google Scholar
     

  • Bäumgen M, Dutschei T, Bornscheuer UT. Marine polysaccharides: incidence, enzymatic degradation and utilization. ChemBioChem. 2021;22:2247–56.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Helbert W. Marine polysaccharide sulfatases. Entrance Mar Sci. 2017;4:1–10.

    Article 

    Google Scholar
     

  • Ficko-Blean E, Préchoux A, Thomas F, Rochat T, Larocque R, Zhu Y, et al. Carrageenan catabolism is encoded by a posh regulon in marine heterotrophic micro organism. Nat Commun. 2017;8:1–7.

    CAS 
    Article 

    Google Scholar
     

  • McLean MW, Williamson FB. Glycosulphatase from Pseudomonas carrageenovora, purification and a few properties. Eur J Biochem. 1979;101:497–505.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mclean MW, Williamson FB Neocarratetraose 4-O-Monosulphate B-Hydrolase from Pseudomonas carrageenovora. 1981;456:447–56.

  • Suarez-Gonzalez P, Reitner J. Ooids forming in situ inside microbial mats (Kiritimati atoll, central Pacific). PalZ. 2021;95:809–21.

    Article 

    Google Scholar
     

  • Arp G, Helms G, Karlinska Ok, Schumann G, Reimer A, Reitner J, et al. Photosynthesis versus exopolymer degradation within the formation of microbialites on the atoll of Kiritimati, Republic of Kiribati, central Pacific. Geomicrobiol J. 2012;29:29–65.

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    How Is Half Of Pc

    How Is Msw Course

    How Is It

    How Is Course Hero

    Recent Comments