Samstag, Juli 30, 2022
StartMicrobiologyMicrobial necromass carbon and nitrogen persistence are decoupled in agricultural grassland soils

Microbial necromass carbon and nitrogen persistence are decoupled in agricultural grassland soils


  • Intergovernmental Panel on Local weather Change. Carbon and Different Biogeochemical Cycles. in Local weather Change 2013 – The Bodily Science Foundation: Working Group I Contribution to the Fifth Evaluation Report of the Intergovernmental Panel on Local weather Change 465–570 (Cambridge College Press, 2014). https://doi.org/10.1017/CBO9781107415324.015.

  • Gruber, N. & Galloway, J. N. An Earth-system perspective of the worldwide nitrogen cycle. Nature 451, 293–296 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Houlton, B. Z. et al. A World of Cobenefits: Fixing the worldwide nitrogen problem. Earth’s Futur. 7, 865–872 (2019).

    Article 

    Google Scholar
     

  • Leifeld, J. et al. Turnover of grassland roots in mountain ecosystems revealed by their radiocarbon signature: Function of temperature and administration. PLoS One 10, 1–13 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Conant, R. T., Cerri, C. E. P., Osborne, B. B. & Paustian, Okay. Grassland administration impacts on soil carbon shares: A brand new synthesis. Ecol. Appl. 27, 662–668 (2017).

    Article 

    Google Scholar
     

  • Poeplau, C. Grassland soil natural carbon shares alongside administration depth and warming gradients. Grass Forage Sci. 76, 186–195 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Simpson, A. J., Simpson, M. J., Smith, E. & Kelleher, B. P. Microbially derived inputs to soil natural matter: Are present estimates too low? Environ. Sci. Technol. 41, 8070–8076 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Grandy, A. S. & Neff, J. C. Molecular C dynamics downstream: The biochemical decomposition sequence and its influence on soil natural matter construction and performance. Sci. Whole Environ. 404, 297–307 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Liang, C., Cheng, G., Wixon, D. L. & Balser, T. C. An Absorbing Markov Chain strategy to understanding the microbial function in soil carbon stabilization. Biogeochemistry 106, 303–309 (2011).

    Article 

    Google Scholar
     

  • Miltner, A., Bombach, P., Schmidt-Brucken, B. & Kastner, M. SOM genesis: Microbial biomass as a major supply. Biogeochemistry 111, 41–55 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Solomon, D. et al. Micro- and nano-environments of carbon sequestration: Multi-element STXM – NEXAFS spectromicroscopy evaluation of microbial carbon and mineral associations. Chem. Geol. 329, 53–73 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Kopittke, P. M. et al. Nitrogen-rich microbial merchandise present new organo-mineral associations for the stabilization of soil natural matter. Glob. Chang. Biol. 12, 3218–3221 (2017).


    Google Scholar
     

  • Corridor, S. J., Ye, C., Weintraub, S. R. & Hockaday, W. C. Molecular trade-offs in soil natural carbon composition at continental scale. Nat. Geosci. 13, 687–692 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Angst, G., Mueller, Okay. E., Nierop, Okay. G. J. & Simpson, M. J. Plant- or microbial-derived? A assessment on the molecular composition of stabilized soil natural matter. Soil Biol. Biochem. 156, 108189 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kiem, R. & Kögel-Knabner, I. Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biol. Biochem. 35, 101–118 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Buckeridge, Okay. M., Creamer, C. & Whitaker, J. Deconstructing the microbial necromass continuum to tell soil carbon sequestration. Funct. Ecol. (2022) https://doi.org/10.1111/1365-2435.14014.

  • Creamer, C. A. et al. Mineralogy dictates the preliminary mechanism of microbial necromass affiliation. Geochim. Cosmochim. Acta 260, 161–176 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Newcomb, C. J., Qafoku, N. P., Grate, J. W., Bailey, V. L. & De Yoreo, J. J. Growing a molecular image of soil natural matter-mineral interactions by quantifying organo-mineral binding. Nat. Commun. 8, 396 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Lehmann, J. & Kleber, M. The contentious nature of soil natural matter. Nature 528, 60–68 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, Okay. & Paul, E. The Microbial Effectivity-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil natural matter stabilization: Do labile plant inputs kind steady soil natural matter? Glob. Chang. Biol. 19, 988–995 (2013).

    Article 

    Google Scholar
     

  • Kaiser, Okay. & Guggenberger, G. The function of DOM sorption to mineral surfaces within the preservation of natural matter in soils. 31, 711–725 (2000).

  • Kleber, M., Sollins, P. & Sutton, R. A conceptual mannequin of organo-mineral interactions in soils: Self-assembly of natural molecular fragments into zonal buildings on mineral surfaces. Biogeochemistry 85, 9–24 (2007).

    Article 

    Google Scholar
     

  • Bradford, M. A., Keiser, A. D., Davies, C. A., Mersmann, C. A. & Strickland, M. S. Empirical proof that soil carbon formation from plant inputs is positively associated to microbial progress. Biogeochemistry 113, 271–281 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative evaluation of microbial necromass contribution to soil natural matter. Glob. Chang. Biol. 25, 3578–3590 (2019).

    Article 

    Google Scholar
     

  • Bailey, V. L., Pries, C. H. & Lajtha, Okay. What will we find out about soil carbon destabilization? Environ. Res. Lett. 14, 083004 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Buckeridge, Okay. M. et al. Environmental and microbial controls on microbial necromass recycling, an essential precursor for soil carbon stabilization. Commun. Earth Environ. 1, 1–9 (2020).

    Article 

    Google Scholar
     

  • Wieder, W. R., Grandy, A. S., Kallenbach, C. M. & Bonan, G. B. Integrating microbial physiology and physio-chemical ideas in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) mannequin. Biogeosciences 11, 3899–3917 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Parton, W. et al. World-scale similarities in nitrogen launch patterns throughout long-term decomposition. Science. 315, 361–364 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Soong, J. L. et al. Microbial carbon limitation: The necessity for integrating microorganisms into our understanding of ecosystem carbon biking. Glob. Chang. Biol. 26, 1953–1961 (2020).

    Article 

    Google Scholar
     

  • Fernandez, C. W. & Koide, R. T. Preliminary melanin and nitrogen concentrations management the decomposition of ectomycorrhizal fungal litter. Soil Biol. Biochem. 77, 150–157 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Malik, A. A. et al. Land use pushed change in soil pH impacts microbial carbon biking processes. Nat. Commun. 9, 3591 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Elevated temperature will increase the buildup of microbial necromass nitrogen in soil through rising microbial turnover. Glob. Chang. Biol. 26, 5277–5289 (2020).

    Article 

    Google Scholar
     

  • Possinger, A. R. et al. Organo–natural and organo–mineral interfaces in soil on the nanometer scale. Nat. Commun. 11, 1–11 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Omoike, A. & Chorover, J. Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochim. Cosmochim. Acta 70, 827–838 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Van Meter, Okay. J., Basu, N. B., Veenstra, J. J. & Burras, C. L. The nitrogen legacy: Rising proof of nitrogen accumulation in anthropogenic landscapes. Environ. Res. Lett. 11, 035014 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lomstein, B. A., Langerhuus, A. T., D’Hondt, S., Jørgensen, B. B. & Spivack, A. J. Endospore abundance, microbial progress and necromass turnover in deep sub-seafloor sediment. Nature 484, 101–104 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Fernandez, C. W., Langley, J. A., Chapman, S., McCormack, M. L. & Koide, R. T. The decomposition of ectomycorrhizal fungal necromass. Soil Biol. Biochem. 93, 38–49 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Throckmorton, H. M., Chicken, J. A., Dane, L., Firestone, M. Okay. & Horwath, W. R. The supply of microbial C has little influence on soil natural matter stabilisation in forest ecosystems. Ecol. Lett. 15, 1257–1265 (2012).

    Article 

    Google Scholar
     

  • Buckeridge, Okay. M. et al. Sticky lifeless microbes: Fast abiotic retention of microbial necromass in soil. Soil Biol. Biochem. 149, 107929 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Jilling, A. et al. Minerals within the rhizosphere: Neglected mediators of soil nitrogen availability to crops and microbes. Biogeochemistry 139, 103–122 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral‐related soil natural matter formation: Integrating the function of plant carbon supply, chemistry, and level of entry. Glob. Chang. Biol. 25, 12–24 (2019).

    Article 

    Google Scholar
     

  • Kuzyakov, Y. Priming results: Interactions between residing and lifeless natural matter. Soil Biol. Biochem. 42, 1363–1371 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The worldwide stoichiometry of litter nitrogen mineralization. Science. 321, 684–686 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Fernandez, C. W., Heckman, Okay., Kolka, R. & Kennedy, P. G. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecol. Lett. 22, 498–505 (2019).

    Article 

    Google Scholar
     

  • Certano, A. Okay., Fernandez, C. W., Heckman, Okay. A. & Kennedy, P. G. The afterlife results of fungal morphology: Contrasting decomposition charges between diffuse and rhizomorphic necromass. Soil Biol. Biochem. 126, 76–81 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Ma, L. et al. Meeting and growth of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 5, e1000354 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Parsons, L. L., Smith, M. S. & Murray, R. E. Soil denitrification dynamics: Spatial and temporal variations of enzyme exercise, populations, and nitrogen gasoline loss. Soil Sci. Soc. Am. J. 55, 90–95 (1991).

    CAS 
    Article 

    Google Scholar
     

  • Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and scorching moments in soil: Idea & assessment. Soil Biol. Biochem. 83, 184–199 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Bardgett, R. D., Lovell, R. D., Hobbs, P. J. & Jarvis, S. C. Seasonal adjustments in soil microbial communities alongside a fertility gradient of temperate grasslands. Soil Biol. Biochem. 31, 1021–1030 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Hu, Y., Zheng, Q., Noll, L., Zhang, S. & Wanek, W. Direct measurement of the in situ decomposition of microbial-derived soil natural matter. Soil Biol. Biochem. 141, 107660 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Blagodatskaya, E., Yuyukina, T., Blagodatsky, S. & Kuzyakov, Y. Turnover of soil natural matter and of microbial biomass below C3-C4 vegetation change: Consideration of 13 C fractionation and preferential substrate utilization. Soil Biol. Biochem. 43, 159–166 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Chen, L. et al. Soil carbon persistence ruled by plant enter and mineral safety at regional and world scales. Ecol. Lett. 24, 1018–1028 (2021).

    Article 

    Google Scholar
     

  • Johnson, M. S. & Lehmann, J. Double-funneling of timber: Stemflow and root-induced preferential circulate. Ecoscience 13, 324–333 (2006).

    Article 

    Google Scholar
     

  • Baggs, E. M. Soil microbial sources of nitrous oxide: Current advances in information, rising challenges and future path. Curr. Opin. Environ. Maintain. 3, 321–327 (2011).

    Article 

    Google Scholar
     

  • Moreau, D., Bardgett, R. D., Finlay, R. D., Jones, D. L. & Philippot, L. A plant perspective on nitrogen biking within the rhizosphere. Funct. Ecol. 33, 540–552 (2019).

    Article 

    Google Scholar
     

  • Keiluweit, M. et al. Mineral safety of soil carbon counteracted by root exudates. Nat. Clim. Chang. 5, 588–595 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Derrien, D. & Amelung, W. Computing the imply residence time of soil carbon fractions utilizing steady isotopes: Impacts of the mannequin framework. Eur. J. Soil Sci. 62, 237–252 (2011).

    Article 

    Google Scholar
     

  • Beidler, Okay. V. et al. Substrate high quality drives fungal necromass decay and decomposer group construction below contrasting vegetation varieties. J. Ecol. 108, 1845–1859 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Gunina, A., Dippold, M., Glaser, B. & Kuzyakov, Y. Turnover of microbial teams and cell parts in soil: 13 C evaluation of mobile biomarkers. Biogeosciences 14, 271–283 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C. et al. Stabilization of microbial residues in soil natural matter after two years of decomposition. Soil Biol. Biochem. 141, 107687 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Robertson, A. D. et al. Unifying soil natural matter formation and persistence frameworks: the MEMS mannequin. Biogeosci. Talk about. 1–36 https://doi.org/10.5194/bg-2018-430 (2018).

  • R Core Staff. R: A language and atmosphere for statistical computing. (2020).

  • Fierer, N. & Schimel, J. P. A proposed mechanism for the heart beat in carbon dioxide manufacturing generally noticed following the speedy rewetting of a dry soil. Soil Sci. Soc. Am. J. 67, 798 (2003).

  • Maddison, A. L. et al. Predicting future biomass yield in Miscanthus utilizing the carbohydrate metabolic profile as a biomarker. GCB Bioenergy 9, 1264–1278 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Lopez-Sangil, L. & Rovira, P. Sequential chemical extractions of the mineral-associated soil natural matter: An built-in strategy for the fractionation of organo-mineral complexes. Soil Biol. Biochem. 62, 57–67 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: Linear and nonlinear combined results fashions. R bundle model 3, 1–144 (2020).


    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Information Evaluation. (Springer-Verlag, 2016).

  • Buckeridge, Okay. M. kmbuckeridge/UGrass_NecromassCNstabilization: Necromass CN stabilization (v1.0). Zenodo. https://doi.org/10.5281/zenodo.5056539 (2021).

  • RELATED ARTICLES

    Most Popular

    Recent Comments