Samstag, Juli 30, 2022
StartMicrobiologyMicrobiome meeting predictably shapes variety throughout a variety of disturbance frequencies in...

Microbiome meeting predictably shapes variety throughout a variety of disturbance frequencies in experimental microcosms


  • Widder, S. et al. Challenges in microbial ecology: constructing predictive understanding of group operate and dynamics. ISME J. 10, 2557–2568 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Flemming, H.-C. & Wuertz, S. Micro organism and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ladau, J. & Eloe-Fadrosh, E. A. Spatial, temporal, and phylogenetic scales of microbial ecology. Traits Microbiol. 27, 662–669 (2019).

  • Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil group composition decide ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shade, A. et al. Fundamentals of microbial group resistance and resilience. Entrance. Microbiol. 3, 1–19 (2012).

    Article 

    Google Scholar
     

  • Pickett, S. T. A. & White, P. S. The Ecology of Pure Disturbance and Patch Dynamics (Educational press, 1985).

  • Cain, M., Bowman, W. & Hacker, S. Ecology. third edn (Sinauer Associates Inc., 2014).

  • Miller, A. D., Roxburgh, S. H. & Shea, Okay. How frequency and depth form diversity-disturbance relationships. Proc. Natl Acad. Sci. USA 108, 5643–5648 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Santillan, E., Seshan, H., Constancias, F., Drautz-Moses, D. I. & Wuertz, S. Frequency of disturbance alters variety, operate, and underlying meeting mechanisms of complicated bacterial communities. NPJ Biofilms Microbiomes 5, 1–8 (2019).

    Article 

    Google Scholar
     

  • Zalasiewicz, J., Williams, M., Steffen, W. & Crutzen, P. The New World of the Anthropocene. Environ. Sci. Technol. 44, 2228–2231 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Connell, J. H. Range in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Svensson, J. R., Lindegarth, M., Jonsson, P. R. & Pavia, H. Disturbance–variety fashions: what do they actually predict and the way are they examined? Proc. R. Soc. B: Biol. Sci. 279, 2163–2170 (2012).

    Article 

    Google Scholar
     

  • Yuan, Z. Y., Jiao, F., Li, Y. H. & Kallenbach, R. L. Anthropogenic disturbances are key to sustaining the biodiversity of grasslands. Sci. Rep. 6, 22132–22132 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sasaki, T. et al. Administration applicability of the intermediate disturbance speculation throughout Mongolian rangeland ecosystems. Ecol. Appl. 19, 423–432 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Roxburgh, S. H., Shea, Okay. & Wilson, J. B. The intermediate disturbance speculation: patch dynamics and mechanisms of species coexistence. Ecology 85, 359–371 (2004).

    Article 

    Google Scholar
     

  • Mackey, R. L. & Currie, D. J. The range-disturbance relationship: is it typically sturdy and peaked? Ecology 82, 3479–3492 (2001).


    Google Scholar
     

  • Kershaw, H. M. & Mallik, A. U. Predicting plant variety response to disturbance: applicability of the intermediate disturbance speculation and mass ratio speculation. Crit. Rev. Plant Sci. 32, 383–395 (2013).

    Article 

    Google Scholar
     

  • Fox, J. W. The intermediate disturbance speculation must be deserted. Traits Ecol. Evol. 28, 86–92 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Sheil, D. & Burslem, D. Defining and defending Connell’s intermediate disturbance speculation: a response to Fox. Traits Ecol. Evol. 28, 571–572 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Shea, Okay., Roxburgh, S. H. & Rauschert, E. S. J. Transferring from sample to course of: coexistence mechanisms below intermediate disturbance regimes. Ecol. Lett. 7, 491–508 (2004).

    Article 

    Google Scholar
     

  • Leibold, M. A., Chase, J. M. & Ernest, S. Okay. M. Group meeting and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98, 909–919 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Silvertown, J. Plant coexistence and the area of interest. Traits Ecol. Evol. 19, 605–611 (2004).

    Article 

    Google Scholar
     

  • Rosindell, J., Hubbell, S. P. & Etienne, R. S. The unified impartial principle of biodiversity and biogeography at age ten. Traits Ecol. Evol. 26, 340–348 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Chase, J. M. & Myers, J. A. Disentangling the significance of ecological niches from stochastic processes throughout scales. Philos. Trans. R. Soc. B-Biol. Sci. 366, 2351–2363 (2011).

    Article 

    Google Scholar
     

  • Dini-Andreote, F., Stegen, J. C., van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the stability between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. USA 112, E1326–E1332 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Santillan, E., Seshan, H. & Wuertz, S. Press xenobiotic 3-chloroaniline disturbance favors deterministic meeting with a shift in operate and construction of bacterial communities in sludge bioreactors. ACS EST Water 1, 1429–1437 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Santillan, E., Constancias, F. & Wuertz, S. Press disturbance alters group construction and meeting mechanisms of bacterial taxa and useful genes in mesocosm-scale bioreactors. mSystems 5, e00471–00420 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ferrenberg, S. et al. Adjustments in meeting processes in soil bacterial communities following a wildfire disturbance. ISME J. 7, 1102–1111 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nemergut, D. R. et al. Patterns and processes of microbial group meeting. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou, J. Z. et al. Stochastic meeting results in different communities with distinct features in a bioreactor microbial group. mBio 4, 1–8 (2013).

    Article 

    Google Scholar
     

  • Prosser, J. I. Replicate or lie. Environ. Microbiol. 12, 1806–1810 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xun, W. et al. Range-triggered deterministic bacterial meeting constrains group features. Nat. Commun. 10, 3833 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gao, C. et al. Fungal group meeting in drought-stressed sorghum reveals stochasticity, choice, and common ecological dynamics. Nat. Commun. 11, 34 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Graham, E. B. et al. Towards a generalizable framework of disturbance ecology by crowdsourced science. Entrance. Ecol. Evol. 9, 588940 (2021).

  • Seetha, N., Bhargava, R. & Kumar, P. Impact of natural shock hundreds on a two-stage activated sludge-biofilm reactor. Bioresour. Technol. 101, 3060–3066 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Han, W., Peng, Z., Li, T., Fan, P. & Yu, L. Management of sludge settleability primarily based on natural load and ammonia nitrogen load below low dissolved oxygen. Water Sci. Technol. 78, 2113–2118 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Santillan, E., Phua, W. X., Constancias, F. & Wuertz, S. Sustained natural loading disturbance favors nitrite accumulation in bioreactors with variable resistance, restoration and resilience of nitrification and nitrifiers. Sci. Rep. 10, 21388 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Drake, J. M. & Kramer, A. M. Mechanistic analogy: how microcosms clarify nature. Theor. Ecol. 5, 433–444 (2012).

    Article 

    Google Scholar
     

  • Hill, M. O. Range and evenness: a unifiying notation and its penalties. Ecology 54, 427–432 (1973).

    Article 

    Google Scholar
     

  • Religion, D. P. Conservation analysis and phylogenetic variety. Biol. Conserv. 61, 1–10 (1992).

    Article 

    Google Scholar
     

  • Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and Group Ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article 

    Google Scholar
     

  • Stegen, J. C. et al. Quantifying group meeting processes and figuring out options that impose them. ISME J. 7, 2069–2079 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Seshan, H. et al. Metagenomics and metatranscriptomics reveal pathway of 3-chloroaniline degradation in wastewater reactors. Preprint at https://www.biorxiv.org/content material/10.1101/2021.05.02.442374 (2021).

  • Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Actual sequence variants ought to change operational taxonomic items in marker-gene knowledge evaluation. ISME J. 11, 2639–2643 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: excessive decision pattern inference from Illumina amplicon knowledge. Nat. Strategies 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weiss, S. et al. Normalization and microbial differential abundance methods rely on knowledge traits. Microbiome 5, 27 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McMurdie, P. J. & Holmes, S. Waste not, need not: why rarefying microbiome knowledge is inadmissible. PLoS Comp. Biol. 10, e1003531 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J. & Ning, D. Stochastic group meeting: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, 1–32 (2017).

    Article 

    Google Scholar
     

  • Santillan, E., Seshan, H., Constancias, F. & Wuertz, S. Trait-based life-history methods clarify succession state of affairs for complicated bacterial communities below various disturbance. Environ. Microbiol. 21, 3751–3764 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Martiny, A. C., Treseder, Okay. & Pusch, G. Phylogenetic conservatism of useful traits in microorganisms. ISME J. 7, 830–838 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chase, J. M. Stochastic group meeting causes greater biodiversity in additional productive environments. Science 328, 1388–1391 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mori, A. S., Isbell, F. & Seidl, R. Beta-diversity, group meeting, and ecosystem functioning. Traits Ecol. Evol. 33, 549–564 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Chai, Y. et al. Patterns of taxonomic, phylogenetic variety throughout a long-term succession of forest on the Loess Plateau, China: insights into meeting course of. Sci. Rep. 6, 27087 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou, J. Z. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl Acad. Sci. USA 111, E836–E845 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Bongers, F. & Poorter, L. Purposeful traits and environmental filtering drive group meeting in a species-rich tropical system. Ecology 91, 386–398 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Fukami, T. Historic contingency in group meeting: integrating niches, species swimming pools, and precedence results. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).

    Article 

    Google Scholar
     

  • Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. H. Past biogeographic patterns: processes shaping the microbial panorama. Nat. Rev. Microbiol. 10, 497–506 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shade, A. et al. Conditionally uncommon taxa disproportionately contribute to temporal modifications in microbial variety. mBio 5, 1–9 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Holyoak, M. & Loreau, M. Reconciling empirical ecology with impartial group fashions. Ecology 87, 1370–1377 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Wagner, M. et al. Microbial group composition and performance in wastewater therapy crops. Antonie Van. Leeuwenhoek Int. J. Gen. Mol. Microbiol. 81, 665–680 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Shade, A. Range is the query, not the reply. ISME J. 11, 1–6 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Corridor, A. R. et al. Range–disturbance relationships: frequency and depth work together. Biol. Lett. 8, 768–771 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gibbons, S. M. et al. Disturbance regimes predictably alter variety in an ecologically complicated bacterial system. mBio 7, 1–10 (2016).

    Article 

    Google Scholar
     

  • Mancuso, C. P., Lee, H., Abreu, C. I., Gore, J. & Khalil, A. S. Environmental fluctuations reshape an surprising diversity-disturbance relationship in a microbial group. eLife 10, e67175 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Savage, M., Sawhill, B. & Askenazi, M. Group dynamics: what occurs after we rerun the tape? J. Theor. Biol. 205, 515–526 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Allen, C. R. & Holling, C. Novelty, adaptive capability, and resilience. Ecol. Soc. 15, 1–15 (2010).

  • Rice, E. W., Baird, R. B. & Eaton, A. D. Normal Strategies for the Examination of Water and Wastewater. twenty third edn (APHA-AWWA-WEF, 2017).

  • Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R. & Burton, F. L. WastewateR Engineering: Remedy and Useful resource Restoration. fifth edn, (McGraw Hill Schooling, 2013).

  • Thijs, S. et al. Comparative analysis of 4 bacteria-specific primer pairs for 16S rRNA gene surveys. Entrance. Microbiol. 8, 1–15 (2017).

    Article 

    Google Scholar
     

  • Glöckner, F. O. et al. 25 years of serving the group with ribosomal RNA gene reference databases and instruments. J. Biotechnol. 261, 169–176 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Clarke, Okay. R. & Gorley, R. N. PRIMER v7: Person Guide/Tutorial. (PRIMER-E, 2015).

  • McMurdie, P. J. & Holmes, S. phyloseq: an R package deal for reproducible interactive evaluation and graphics of microbiome census knowledge. PLoS ONE 8, e61217 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Knowledge Evaluation. 2nd edn (Springer-Verlag, 2016).

  • Kassambara, A. rstatix: pipe-friendly framework for primary statistical exams. R-package (v.0.6.0) (2020).

  • Kassambara, A. ggpubr:“ggplot2” Based mostly Publication Prepared Plots. R-package (v.0.1.6) (2017).

  • Albertsen, M., Karst, S. M., Ziegler, A. S., Kirkegaard, R. H. & Nielsen, P. H. Again to basics-the affect of DNA extraction and primer selection on phylogenetic evaluation of activated sludge communities. PLoS ONE 10, 15 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wright, E. S. Utilizing decipher v2.0 to research massive organic sequence knowledge in R. R. J. 8, 352–359 (2016).

    Article 

    Google Scholar
     

  • Schliep, Okay. P. phangorn: phylogenetic evaluation in R. Bioinformatics 27, 592–593 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mikryukov, V. metagMisc: miscellaneous features for metagenomic evaluation. R-package (v.0.0.4) (2020).

  • Kembel, S. W. et al. Picante: R instruments for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Oksanen, F. J. et al. vegan: group ecology package deal. R-package (v.2.5.6) (2019).

  • RELATED ARTICLES

    Most Popular

    Recent Comments