Dienstag, August 2, 2022
StartMicrobiologyNitrate respiration happens all through the depth of mucoid and non-mucoid Pseudomonas...

Nitrate respiration happens all through the depth of mucoid and non-mucoid Pseudomonas aeruginosa submerged agar colony biofilms together with the oxic zone


  • Malhotra, S., Hayes, D. & Wozniak, D. J. Cystic fibrosis and Pseudomonas aeruginosa: The host microbe interface. Clin. Microbiol. Rev. 32(3), e00138-e218. https://doi.org/10.1128/CMR.00138-18 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. Okay., Cheng, N. C. & Cheng, C. M. Biofilms in power wounds: Pathogenesis and prognosis. Tendencies Biotechnol. 37(5), 505–517. https://doi.org/10.1016/j.tibtech.2018.10.011 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hassett, D. J. et al. Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically contaminated cystic fibrosis airways: Rethinking antibiotic remedy methods and drug targets. Adv. Drug Deliv. Rev. 54(11), 1425–1443. https://doi.org/10.1016/S0169-409X(02)00152-7 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Line, L. et al. Physiological ranges of nitrate help anoxic progress by denitrification of Pseudomonas aeruginosa at progress charges reported in cystic fibrosis lungs and sputum. Entrance. Microbiol. 5, 554. https://doi.org/10.3389/fmicb.2014.00554 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Worlitzsch, D. et al. Results of lowered mucus oxygen focus in airway Pseudomonas infections of cystic fibrosis sufferers. J. Clin. Investig. 109(3), 317–325. https://doi.org/10.1172/JCI13870 (2002).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiessl, Okay. T. et al. Phenazine manufacturing promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat. Commun. 10(1), 1–10. https://doi.org/10.1038/s41467-019-08733-w (2019).

    CAS 
    Article 

    Google Scholar
     

  • Toyofuku, M. & Yoon, S. S. Nitric oxide, an outdated molecule with noble features in Pseudomonas aeruginosa biology. Adv. Microb. Physiol. 72, 117–145. https://doi.org/10.1016/bs.ampbs.2018.01.005 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yoon, S. S. et al. Pseudomonas aeruginosa anaerobic respiration in biofilms: Relationships to cystic fibrosis pathogenesis. Dev. Cell 3(4), 593–603. https://doi.org/10.1016/S1534-5807(02)00295-2 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kamath, Okay. S. et al. Pseudomonas aeruginosa proteome underneath hypoxic stress situations mimicking the cystic fibrosis lung. J. Proteome Res. 16(10), 3917–3928. https://doi.org/10.1021/acs.jproteome.7b00561 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6(3), 199–210. https://doi.org/10.1038/nrmicro1838 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ma, Y., Domingo-Felez, C., Plósz, B. G. & Smets, B. F. Intermittent aeration suppresses nitrite-oxidizing micro organism in membrane-aerated biofilms: A model-based clarification. Environ. Sci. Technol. 51, 6146–6155 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Stover, C. et al. Full genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406(6799), 959–964. https://doi.org/10.1038/35023079 (2000).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ohman, D. E. & Chakrabarty, A. Genetic mapping of chromosomal determinants for the manufacturing of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate. Infect. Immun. 33(1), 142–148. https://doi.org/10.1128/iai.33.1.142-148.1981 (1981).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, R., Lam, J., Lam, Okay. & Costerton, J. W. Affect of tradition situations on expression of the mucoid mode of progress of Pseudomonas aeruginosa. J. Clin. Microbiol. 19(1), 8–16. https://doi.org/10.1128/jcm.19.1.8-16.1984 (1984).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gieseke, A. & De Beer, D. Use of microelectrodes to measure in situ microbial actions in biofilms, sediments, and microbial mats. Mol. Microb. Ecol. Man. 2, 1581–1612 (2004).


    Google Scholar
     

  • De Beer, D., Schramm, A., Santegoeds, C. M. & Kuhl, M. A nitrite microsensor for profiling environmental biofilms. Appl. Environ. Microbiol. 63(3), 973–977. https://doi.org/10.1128/aem.63.3.973-977.1997 (1997).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshinari, T. & Knowles, R. Acetylene inhibition of nitrous oxide discount by denitrifying micro organism. Biochem. Biophys. Res. Commun. 69(3), 705–710. https://doi.org/10.1016/0006-291X(76)90932-3 (1976).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hancock, R. E. W. & Speert, D. P. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and impression on remedy. Drug Resist. Updates 3(4), 247–255. https://doi.org/10.1054/drup.2000.0152 (2000).

    CAS 
    Article 

    Google Scholar
     

  • von Ohle, C. et al. Actual-time microsensor measurement of native metabolic actions in ex vivo dental biofilms uncovered to sucrose and handled with chlorhexidine. Appl. Environ. Microbiol. 76(7), 2326–2334. https://doi.org/10.1128/AEM.02090-09 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Schreiber, F. et al. Denitrification in human dental plaque. BMC Biol. 8(1), 1–11. https://doi.org/10.1186/1741-7007-8-24 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Versteeg, G. F. & Van Swaaij, W. P. Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine options. J. Chem. Eng. Information 33(1), 29–34 (1988).

    CAS 
    Article 

    Google Scholar
     

  • Yuan-Hui, L. & Gregory, S. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38(5), 703–714. https://doi.org/10.1016/0016-7037(74)90145-8 (1974).

    ADS 
    Article 

    Google Scholar
     

  • Stewart, P. S. Diffusion in biofilms. J. Bacteriol. 185(5), 1485–1491. https://doi.org/10.1128/JB.185.5.1485-1491.2003 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Revsbech, N. P. & Jørgensen, B. B. Microelectrodes: Their use in microbial ecology. Adv. Microb. Ecol. https://doi.org/10.1007/978-1-4757-0611-6_7 (1986).

    Article 

    Google Scholar
     

  • Walters, M. C., Roe, F., Bugnicourt, A., Franklin, M. J. & Stewart, P. S. Contributions of antibiotic penetration, oxygen limitation, and low metabolic exercise to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Brokers Chemother. 47(1), 317–323. https://doi.org/10.1128/AAC.47.1.317-323.2003 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montgomery, S. T., Mall, M. A., Kicic, A. & Stick, S. M. Hypoxia and sterile irritation in cystic fibrosis airways: Mechanisms and potential therapies. Eur. Respir. J. https://doi.org/10.1183/13993003.00903-2016 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Bjarnsholt T, Alhede M, Alhede M, Eickhardt-Sørensen SR, Moser C, Kühl M, Jensen PØ, Høiby N. The in vivo biofilm. Tendencies Microbiol. 21(9):466–474. https://doi.org/10.1016/j.tim.2013.06.002 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Stewart, P. S. et al. Conceptual mannequin of biofilm antibiotic tolerance that integrates phenomena of diffusion, metabolism, gene expression, and physiology. J. Bacteriol. 201(22), e00307-e319. https://doi.org/10.1128/JB.003017-19 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolpen, M. et al. Nitrous oxide manufacturing in sputum from cystic fibrosis sufferers with power Pseudomonas aeruginosa lung an infection. PLoS ONE 9(1), e84353. https://doi.org/10.1371/journal.pone.0084353 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dar, D., Dar, N., Cai, L. & Newman, D. Okay. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell decision. Science 373(6556), eabi4882. https://doi.org/10.1126/science.abi4882 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bahamondez-Canas, T. F., Heersema, L. A. & Smyth, H. D. C. Present standing of in vitro fashions and assays for susceptibility testing for wound biofilm infections. Biomedicines 7(2), 34. https://doi.org/10.3390/biomedicines7020034 (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Percival, S. L., Bowler, P. G. & Dolman, J. Antimicrobial exercise of silver-containing dressings on wound microorganisms utilizing an in vitro biofilm mannequin. Int. Wound J. 4(2), 186–191. https://doi.org/10.1111/j.1742-481X.2007.00296.x (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ngo, Q. D., Vickery, Okay. & Deva, A. Okay. The impact of topical unfavourable strain on wound biofilms utilizing an in vitro wound mannequin. Wound Restore Regen. 20(1), 83–90. https://doi.org/10.1111/j.1524475X.2011.00747.x (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Folsom, J. P., Baker, B. & Stewart, P. S. In vitro efficacy of bismuth thiols in opposition to biofilms shaped by micro organism remoted from human power wounds. J. Appl. Microbiol. 111(4), 989–996. https://doi.org/10.1111/j.1365-2672.2011.05110.x (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hammond, A. A. et al. An in vitro biofilm mannequin to look at the impact of antibiotic ointments on biofilms produced by burn wound bacterial isolates. Burns 37(2), 312–321. https://doi.org/10.1016/j.burns.2010.09.017 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kovach, Okay. et al. Evolutionary diversifications of biofilms infecting cystic fibrosis lungs promote mechanical toughness by adjusting polysaccharide manufacturing. NPJ Biofilms Microbiomes 3(1), 1–9. https://doi.org/10.1038/s41522-016-0007-9 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yannarell, S. M., Grandchamp, G. M., Chen, S. Y., Daniels, Okay. E. & Shank, E. A. A dual-species biofilm with emergent mechanical and protecting properties. J. Bacteriol. 201(18), e00670-e1618. https://doi.org/10.1128/JB.00670-18 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gloag, E. S., German, G. Okay., Stoodley, P. & Wozniak, D. J. Viscoelastic properties of Pseudomonas aeruginosa variant biofilms. Sci. Rep. 8(1), 1–11. https://doi.org/10.1038/s41598-018-28009-5 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Høiby, N. et al. Formation of Pseudomonas aeruginosa inhibition zone throughout tobramycin disk diffusion is because of transition from planktonic to biofilm mode of progress. Int. J. Antimicrob. Brokers 53(5), 564–573. https://doi.org/10.1016/j.ijantimicag2018.12.015 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Corridor-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: From the pure setting to infectious ailments. Nat. Rev. Microbiol. 2(2), 95–108. https://doi.org/10.1038/nrmicro821 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    How Is Half Of Pc

    How Is Msw Course

    How Is It

    How Is Course Hero

    Recent Comments