Dienstag, August 2, 2022
StartMicrobiologyNo impact of twin publicity to sulfoxaflor and a trypanosome parasite on...

No impact of twin publicity to sulfoxaflor and a trypanosome parasite on bumblebee olfactory studying


  • Ollerton, J., Winfree, R. & Tarrant, S. What number of flowering crops are pollinated by animals?. Oikos 120(3), 321–326 (2011).

    Article 

    Google Scholar
     

  • Aizen, M. A. & More durable, L. D. The worldwide inventory of domesticated honey bees is rising slower than agricultural demand for pollination. Curr. Biol. 19(11), 915–918 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540(7632), 220–229. https://doi.org/10.1038/nature20588 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rader, R. et al. Non-bee bugs are essential contributors to world crop pollination. Proc. Natl. Acad. Sci. 113(1), 146–151 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Osterman, J. et al. International tendencies within the quantity and variety of managed pollinator species. Agr. Ecosyst. Environ. 322, 107653 (2021).

    Article 

    Google Scholar
     

  • Velthuis, H. H. W. & Van Doorn, A. A century of advances in bumblebee domestication and the financial and environmental points of its commercialization for pollination. Apidologie 37(4), 421–451 (2006).

    Article 

    Google Scholar
     

  • Hung, Ok. L. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide significance of honey bees as pollinators in pure habitats. Proc. Royal Soc. B Biol. Sci. 285(1870), 20172140 (2018).

    Article 

    Google Scholar
     

  • Brown, M. J. F. & Paxton, R. J. The conservation of bees: A worldwide perspective. Apidologie 40(3), 410–416 (2009).

    Article 

    Google Scholar
     

  • Cameron, S. A. & Sadd, B. M. International tendencies in bumble bee well being. Annu. Rev. Entomol. 65, 209–232 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Potts, S. G. et al. International pollinator declines: Developments, impacts and drivers. Developments Ecol. Evol. 25(6), 345–353 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Vanbergen, A. J. & Initiative, T. I. P. Threats to an ecosystem service: Pressures on pollinators. Entrance. Ecol. Environ. 11(5), 251–259 (2013).

    Article 

    Google Scholar
     

  • David, A. et al. Widespread contamination of wildflower and bee-collected pollen with advanced mixtures of neonicotinoids and fungicides generally utilized to crops. Environ. Int. 88, 169–178. https://doi.org/10.1016/j.envint.2015.12.011 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gradish, A. E. et al. Comparability of pesticide publicity in honey bees (Hymenoptera: Apidae) and bumble bees (Hymenoptera: Apidae): implications for danger assessments. Environ. Entomol. 48(1), 12–21 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Johnson, R. M., Ellis, M. D., Mullin, C. A. & Frazier, M. Pesticides and honey bee toxicity–USA. Apidologie 41(3), 312–331 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Johnson, R. M. et al. Ecologically acceptable xenobiotics induce cytochrome P450s in Apis mellifera. PLoS ONE 7(2), e31051. https://doi.org/10.1371/journal.pone.0031051 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mullin, C. A. et al. Excessive ranges of miticides and agrochemicals in North American apiaries: Implications for honey bee well being. PLoS ONE 5(3), e9754. https://doi.org/10.1371/journal.pone.0009754 (2010).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. 108(2), 662–667 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53(1), 191–208. https://doi.org/10.1146/annurev.ento.53.103106.093454 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Meeus, I., Brown, M. J. F., de Graaf, D. C. & Smagghe, G. Results of invasive parasites on bumble bee declines. Conserv. Biol. 25(4), 662–671. https://doi.org/10.1111/j.1523-1739.2011.01707.x (2011).

    Article 
    PubMed 

    Google Scholar
     

  • O’Neal, S. T., Anderson, T. D. & Wu-Sensible, J. Y. Interactions between pesticides and pathogen susceptibility in honey bees. Curr. Opin. Insect Sci. 26, 57–62. https://doi.org/10.1016/j.cois.2018.01.006 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Botías, C. et al. A number of stressors work together to impair the efficiency of bumblebee Bombus terrestris colonies. J. Anim. Ecol. 90(2), 415–431 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Dance, C., Botías, C. & Goulson, D. The mixed results of a monotonous food plan and publicity to thiamethoxam on the efficiency of bumblebee micro-colonies. Ecotoxicol. Environ. Saf. 139, 194–201 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fauser-Misslin, A., Sadd, B. M., Neumann, P. & Sandrock, C. Affect of mixed pesticide and parasite publicity on bumblebee colony traits within the laboratory. J. Appl. Ecol. 51(2), 450–459 (2014).

    Article 

    Google Scholar
     

  • Zaragoza-Trello, C., Vilà, M., Botías, C. & Bartomeus, I. Interactions amongst world change pressures act in a non-additive means on bumblebee people and colonies. Funct. Ecol. 35(2), 420–434 (2021).

    Article 

    Google Scholar
     

  • Collett, M., Chittka, L. & Collett, T. S. Spatial reminiscence in insect navigation. Curr. Biol. 23(17), R789–R800 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klein, S., Cabirol, A., Devaud, J. M., Barron, A. B. & Lihoreau, M. Why bees are so susceptible to environmental stressors. Developments Ecol. Evol. 32(4), 268–278 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Dyer, A. G., Dorin, A., Reinhardt, V., Garcia, J. E. & Rosa, M. G. Bee reverse-learning conduct and intra-colony variations: simulations primarily based on behavioral experiments reveal advantages of range. Ecol. Mannequin. 277, 119–131 (2014).

    Article 

    Google Scholar
     

  • Raine, N. E. & Chittka, L. No trade-off between studying velocity and associative flexibility in bumblebees: A reversal studying check with a number of colonies. PLoS ONE 7(9), e45096 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Henry, M. et al. A standard pesticide decreases foraging success and survival in honey bees. Science 336(6079), 348–350 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Siviter, H., Koricheva, J., Brown, M. J. F. & Leadbeater, E. Quantifying the impression of pesticides on studying and reminiscence in bees. J. Appl. Ecol. 55(6), 2812–2821 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bitterman, M. E., Menzel, R., Fietz, A. & Schäfer, S. Classical conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp. Psychol. 97(2), 107–119. https://doi.org/10.1037/0735-7036.97.2.107 (1983).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Takeda, Ok. Classical conditioned response within the honey bee. J. Insect Physiol. 6(3), 168–179. https://doi.org/10.1016/0022-1910(61)90060-9 (1961).

    CAS 
    Article 

    Google Scholar
     

  • Laloi, D. et al. Olfactory conditioning of the proboscis extension in bumble bees. Entomol. Exp. Appl. 90(2), 123–129 (1999).

    Article 

    Google Scholar
     

  • Gómez-Moracho, T., Heeb, P. & Lihoreau, M. Results of parasites and pathogens on bee cognition. Ecol. Entomol. 42, 51–64 (2017).

    Article 

    Google Scholar
     

  • Garratt, M. P. D. et al. The identification of crop pollinators helps goal conservation for improved ecosystem providers. Biol. Cons. 169, 128–135 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Morandin, L. A., Laverty, T. M. & Kevan, P. G. Bumble bee (Hymenoptera: Apidae) exercise and pollination ranges in business tomato greenhouses. J. Econ. Entomol. 94(2), 462–467 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Siviter, H. et al. No proof for damaging impacts of acute sulfoxaflor publicity on bee olfactory conditioning or working reminiscence. PeerJ 7, e7208 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sparks, T. C. et al. Sulfoxaflor and the sulfoximine pesticides: Chemistry, mode of motion and foundation for efficacy on resistant bugs. Pestic. Biochem. Physiol. 107(1), 1–7. https://doi.org/10.1016/j.pestbp.2013.05.014 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G. & Given, Ok. A number of routes of pesticide publicity for honey bees dwelling close to agricultural fields. PLoS ONE 7(1), e29268 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tomizawa, M. & Casida, J. E. Neonicotinoid insecticide toxicology: Mechanisms of selective motion. Annu. Rev. Pharmacol. Toxicol. 45, 247–268 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Mixed pesticide publicity severely impacts individual-and colony-level traits in bees. Nature 491(7422), 105–108 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stanley, D. A., Russell, A. L., Morrison, S. J., Rogers, C. & Raine, N. E. Investigating the impacts of field-realistic publicity to a neonicotinoid pesticide on bumblebee foraging, homing capacity and colony progress. J. Appl. Ecol. 53(5), 1440–1449 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Williamson, S. M. & Wright, G. A. Publicity to a number of cholinergic pesticides impairs olfactory studying and reminiscence in honeybees. J. Exp. Biol. 216(10), 1799–1807 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, E. C., Chuang, Y. C., Chen, Y. L. & Chang, L. H. Irregular foraging conduct induced by sublethal dosage of imidacloprid within the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 101(6), 1743–1748 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang, E., Chang, H., Wu, W. & Chen, Y. Impaired olfactory associative conduct of honeybee employees because of contamination of imidacloprid within the larval stage. PLoS ONE 7(11), e49472 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Watson, G. B., Siebert, M. W., Wang, N. X., Loso, M. R. & Sparks, T. C. Sulfoxaflor–A sulfoximine insecticide: Evaluation and evaluation of mode of motion, resistance and cross-resistance. Pestic. Biochem. Physiol. 178, 104924 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cordes, N. et al. Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations. J. Invertebr. Pathol. 109(2), 209–216 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Gillespie, S. Elements affecting parasite prevalence amongst wild bumblebees. Ecol. Entomol. 35(6), 737–747 (2010).

    Article 

    Google Scholar
     

  • Plischuk, S., Antúnez, Ok., Haramboure, M., Minardi, G. M. & Lange, C. E. Lengthy-term prevalence of the protists Crithidia bombi and Apicystis bombi and detection of the microsporidium Nosema bombi in invasive bumble bees. Environ. Microbiol. Rep. 9(2), 169–173 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shykoff, J. A. & Schmid-Hempel, P. Incidence and results of 4 parasites in pure populations of bumble bees in Switzerland. Apidologie 22(2), 117–125 (1991).

    Article 

    Google Scholar
     

  • Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Bumble-bee foragers contaminated by a intestine parasite have an impaired capacity to make the most of floral data. Proc. Royal Soc. B Biol. Sci. 273(1590), 1073–1078 (2006).

    Article 

    Google Scholar
     

  • Otterstatter, M. C., Gegear, R. J., Colla, S. R. & Thomson, J. D. Results of parasitic mites and protozoa on the flower fidelity and foraging charge of bumble bees. Behav. Ecol. Sociobiol. 58(4), 383–389 (2005).

    Article 

    Google Scholar
     

  • Martin, C. D., Fountain, M. T. & Brown, M. J. F. Bumblebee olfactory studying affected by activity allocation however not by a trypanosome parasite. Sci. Rep. 8(1), 1–8 (2018).


    Google Scholar
     

  • Azpiazu, C. et al. Toxicity of the insecticide sulfoxaflor alone and together with the fungicide fluxapyroxad in three bee species. Sci. Rep. 11(1), 1–9 (2021).

    Article 
    CAS 

    Google Scholar
     

  • European Meals Security Authority (EFSA) et al. Peer overview of the pesticide danger evaluation for the lively substance sulfoxaflor in mild of confirmatory knowledge submitted. EFSA J. 17(3), e05633 (2019).


    Google Scholar
     

  • Linguadoca, A., Rizzi, C., Villa, S. & Brown, M. J. F. Sulfoxaflor and dietary deficiency synergistically scale back survival and fecundity in bumblebees. Sci. Complete Environ. 795, 148680 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sandor, A., Sarospataki, M. & Farkas, S. The mode of motion of neonicotinoids on bugs. Növényvédelem 51(1), 14–24 (2015).


    Google Scholar
     

  • Stanley, D. A., Smith, Ok. E. & Raine, N. E. Bumblebee studying and reminiscence is impaired by continual publicity to a neonicotinoid pesticide. Sci. Rep. 5, 16508 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alghamdi, A., Dalton, L., Phillis, A., Rosato, E. & Mallon, E. B. Immune response impairs studying in free-flying bumble-bees. Biol. Lett. 4(5), 479–481 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mallon, E. B., Brockmann, A. & Schmid-Hempel, P. Immune response inhibits associative studying in bugs. Proc. Royal Soc. London Collection B Biol. Sci. 270(1532), 2471–2473 (2003).

    Article 

    Google Scholar
     

  • Riddell, C. E. & Mallon, E. B. Insect psychoneuroimmunology: Immune response reduces studying in protein starved bumblebees (Bombus terrestris). Mind Behav. Immun. 20(2), 135–138 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fries, I. et al. Molecular characterization of Nosema bombi (Microsporidia: Nosematidae) and a notice on its websites of an infection in Bombus terrestris (Hymenoptera: Apoidea). J. Apic. Res. 40(3–4), 91–96 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Siviter, H., Folly, A. J., Brown, M. J. F. & Leadbeater, E. Particular person and mixed impacts of sulfoxaflor and Nosema bombi on bumblebee (Bombus terrestris) larval progress. Proc. R. Soc. B 287(1932), 20200935 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Charbonneau, L. R., Hillier, N. Ok., Rogers, R. E., Williams, G. R. & Shutler, D. Results of Nosema apis, N. ceranae, and coinfections on honey bee (Apis mellifera) studying and reminiscence. Sci. Rep. 6, 22626 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gage, S. L. et al. Nosema ceranae parasitism impacts olfactory studying and reminiscence and neurochemistry in honey bees (Apis mellifera). J. Exp. Biol. 221(4), jeb161489. https://doi.org/10.1242/jeb.161489 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Piiroinen, S. & Goulson, D. Persistent neonicotinoid pesticide publicity and parasite stress differentially impacts studying in honeybees and bumblebees. Proc. Royal Soc. B Biol. Sci. 283(1828), 20160246 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bell, H. C., Montgomery, C. N., Benavides, J. E. & Nieh, J. C. Results of nosema ceranae (Dissociodihaplophasida: Nosematidae) and flupyradifurone on olfactory studying in honey bees, Apis mellifera (Hymenoptera: Apidae). J. Insect Sci. https://doi.org/10.1093/jisesa/ieaa130 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, M. J. F., Loosli, R. & Schmid-Hempel, P. Situation-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91(3), 421–427. https://doi.org/10.1034/j.1600-0706.2000.910302.x (2000).

    Article 

    Google Scholar
     

  • Siviter, H., Brown, M. J. F. & Leadbeater, E. Sulfoxaflor publicity reduces bumblebee reproductive success. Nature 561(7721), 109–112 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Worden, B. D., Skemp, A. Ok. & Papaj, D. R. Studying in two contexts: The consequences of interference and physique measurement in bumblebees. J. Exp. Biol. 208(11), 2045–2053 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Riveros, A. J. & Gronenberg, W. Olfactory studying and reminiscence within the bumblebee Bombus occidentalis. Naturwissenschaften 96(7), 851–856. https://doi.org/10.1007/s00114-009-0532-y (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mares, S., Ash, L. & Gronenberg, W. Mind allometry in bumblebee and honey bee employees. Mind Behav. Evol. 66(1), 50–61. https://doi.org/10.1159/000085047 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Arce, A. N. et al. Foraging bumblebees purchase a desire for neonicotinoid-treated meals with extended publicity. Proc. Royal Soc. B Biol. Sci. 285(1885), 20180655. https://doi.org/10.1098/rspb.2018.0655 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Muth, F., Gaxiola, R. L. & Leonard, A. S. No proof for neonicotinoid preferences within the bumblebee Bombus impatiens. Royal Soc. Open Sci. 7(5), 191883 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Rutrecht, S. T. & Brown, M. J. F. Differential virulence in a multiple-host parasite of bumble bees: resolving the paradox of parasite survival?. Oikos 118(6), 941–949 (2009).

    Article 

    Google Scholar
     

  • Schmid-Hempel, P., Puhr, Ok., Krüger, N., Reber, C. & Schmid-Hempel, R. Dynamic and genetic penalties of variation in horizontal transmission for a microparasitic an infection. Evolution 53(2), 426–434 (1999).

    PubMed 
    Article 

    Google Scholar
     

  • Evans, L. J., Raine, N. E. & Leadbeater, E. Reproductive setting impacts studying efficiency in bumble bees. Behav. Ecol. Sociobiol. 70(12), 2053–2060 (2016).

    Article 

    Google Scholar
     

  • Cole, R. J. The applying of the “triangulation” methodology to the purification of nosema spores from insect tissues. J. Invertebr. Pathol. 15(2), 193–195. https://doi.org/10.1016/0022-2011(70)90233-8 (1970).

    Article 

    Google Scholar
     

  • Folly, A. J., Barton-Navarro, M. & Brown, M. J. F. Publicity to nectar-realistic sugar concentrations negatively impacts the flexibility of the trypanosome parasite (Crithidia bombi) to contaminate its bumblebee host. Ecol. Entomol. 45(6), 1495–1498 (2020).

    Article 

    Google Scholar
     

  • Schlüns, H., Sadd, B. M., Schmid-Hempel, P. & Crozier, R. H. An infection with the trypanosome Crithidia bombi and expression of immune-related genes within the bumblebee Bombus terrestris. Dev. Comp. Immunol. 34(7), 705–709 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Yourth, C., Brown, M. J. F. & Schmid-Hempel, P. Results of natal and novel Crithidia bombi (trypanosomatidae) infections on Bombus terrestris hosts. Insectes Soc. 55(1), 86–90. https://doi.org/10.1007/s00040-007-0974-1 (2008).

    Article 

    Google Scholar
     

  • Fournier, A., Rollin, O., Le Féon, V., Decourtye, A. & Henry, M. Crop-emptying charge and the design of pesticide danger evaluation schemes within the honey bee and wild bees (Hymenoptera: Apidae). J. Econ. Entomol. 107(1), 38–46 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Samuelson, E. E. W., Chen-Wishart, Z. P., Gill, R. J. & Leadbeater, E. Impact of acute pesticide publicity on bee spatial working reminiscence utilizing an analogue of the radial-arm maze. Sci. Rep. 6(1), 1–11 (2016).

    Article 
    CAS 

    Google Scholar
     

  • R Core Crew. (2020). R: A language and setting for statistical computing. Vienna, Austria: R Basis for Statistical Computing.

  • Kassambara, A., Kosinski, M., Biecek, P., & Fabian, S. (2020). survminer: drawing survival curves utilizing ‚ggplot2‘. R bundle model 0.4. 8. 2019.

  • Therneau, T. M. & Lumley, T. Package deal ‘survival’. R High Doc 128(10), 28–33 (2020).


    Google Scholar
     

  • Bartoń, Ok. (2020). MuMIn: Multi-Mannequin Inference. R bundle ver. 1.43. 17. CRAN: The Complete R Archive Community, Berkeley, CA, USA.

  • Wickham, H. ggplot2: Elegant Graphics for Knowledge Evaluation (Springer-Verlag, 2016).

    MATH 
    E-book 

    Google Scholar
     

  • Burnham, Ok. P., & Anderson, D. R. (2002). A sensible information-theoretic method. Mannequin choice and multimodel inference, 2.

  • RELATED ARTICLES

    Most Popular

    How Is Half Of Pc

    How Is Msw Course

    How Is It

    How Is Course Hero

    Recent Comments