Samstag, Mai 21, 2022
StartHealth ScienceOncogenetic panorama of T-cell lymphoblastic lymphomas in comparison with T-cell acute lymphoblastic...

Oncogenetic panorama of T-cell lymphoblastic lymphomas in comparison with T-cell acute lymphoblastic leukemia


  • Arber, D. A., Orazi, A., Hasserjian, R., Thiele, J., Borowitz, M. J., le Beau, M. M. et al. The 2016 revision to the World Well being Group classification of myeloid neoplasms and acute leukemia. Blood 127, 2391–2405 (2016).

  • Kroeze, E., Loeffen, J. L. C., Poort, V. M. & Meijerink, J. P. P. T-cell lymphoblastic lymphoma and leukemia: completely different illnesses from a standard premalignant progenitor? Blood Adv 4, 3466–3473 (2020).

  • van der Zwet, J. C. G., Cordo’, V., Canté-Barrett, Ok. & Meijerink, J. P. P. Multi-omic approaches to enhance consequence for T-cell acute lymphoblastic leukemia sufferers. Adv Biol Regul 74, 100647 (2019).

  • Burkhardt, B., Zimmermann, M., Oschlies, I., Niggli, F., Mann, G., Parwaresch, R. et al. The impression of age and gender on biology, medical options and remedy consequence of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol 131, 39–49 (2005).

  • Burkhardt, B., Reiter, A., Landmann, E., Lang, P., Lassay, L., Dickerhoff, R. et al. Poor consequence for youngsters and adolescents with progressive illness or relapse of lymphoblastic lymphoma: a report from the Berlin-Frankfurt-Muenster group. J Clin Oncol 27, 3363–3369 (2009).

  • Hagedorn, N., Acquaviva, C., Fronkova, E., Von Stackelberg, A., Barth, A., Zur Stadt, U. et al. Submicroscopic bone marrow involvement in remoted extramedullary relapses in childhood acute lymphoblastic leukemia: a extra exact definition of “remoted” and its potential medical implications, a collaborative examine of the Resistant Illness Committee of the Worldwide BFM examine group. Blood 110, 4022–4029 (2007).

  • Basso, Ok., Mussolin, L., Lettieri, A., Brahmachary, M., Lim, W. Ok., Califano, A. et al. T-cell lymphoblastic lymphoma exhibits variations and similarities with T-cell acute lymphoblastic leukemia by genomic and gene expression analyses. Genes Chromosomes Most cancers 50, 1063–1075 (2011).

  • Bonn, B. R., Big, A., Rohde, M., Oschlies, I., Klapper, W., Voss, R. et al. Complete exome sequencing hints at a novel mutational profile of paediatric T-cell lymphoblastic lymphoma. Br J Haematol vol. 168 308–313 (2015).

  • Feng, H., Stachura, D. L., White, R. M., Gutierrez, A., Zhang, L., Sanda, T. et al. T-lymphoblastic lymphoma cells categorical excessive ranges of BCL2, S1P1, and ICAM1, resulting in a blockade of tumor cell intravasation. Most cancers Cell 18, 353–366 (2010).

  • Patel, J. L., Smith, L. M., Anderson, J., Abromowitch, M., Campana, D., Jacobsen, J. et al. The immunophenotype of T-lymphoblastic lymphoma in kids and adolescents: A kids’s oncology group report. Br J Haematol 159, 454–461 (2012).

  • Bernard, A., Boumsell, L., Reinherz, E., Nadler, L., Ritz, J., Coppin, H. et al. Cell floor characterization of malignant T cells from lymphoblastic lymphoma utilizing monoclonal antibodies: proof for phenotypic variations between malignant T cells from sufferers with acute lymphoblastic leukemia and lymphoblastic lymphoma. Blood 57, 1105–1110 (1981).

  • Uyttebroeck, A., Vanhentenrijk, V., Hagemeijer, A., Boeckx, N., Renard, M., Wlodarska, I. et al. Is there a distinction in childhood T-cell acute lymphoblastic leukaemia and T-cell lymphoblastic lymphoma? Leuk Lymphoma 48, 1745–1754 (2007).

  • Haider, Z., Landfors, M., Golovleva, I., Erlanson, M., Schmiegelow, Ok., Flægstad, T. et al. DNA methylation and replica quantity variation profiling of T-cell lymphoblastic leukemia and lymphoma. Blood Most cancers J 10, 45 (2020).

  • Terwilliger, T. & Abdul-Hay, M. Acute lymphoblastic leukemia: a complete evaluation and 2017 replace. Blood Most cancers J. 7, e577 (2017).

  • Pillon, M., Piglione, M., Garaventa, A., Conter, V., Giuliano, M., Arcamone, G. et al. Lengthy-term outcomes of AIEOP LNH-92 protocol for the remedy of pediatric lymphoblastic lymphoma: a report of the Italian affiliation of pediatric hematology and oncology. Pediatr Blood Most cancers 53, 953–959 (2009).

  • Goldberg, J. M., Silverman, L. B., Levy, D. E., Dalton, V. Ok., Gelber, R. D., Lehmann, L. et al. Childhood T-cell acute lymphoblastic leukemia: The Dana-Farber Most cancers Institute Acute Lymphoblastic Leukemia Consortium expertise. J Clin Oncol vol. 21 3616–3622 (2003).

  • Sandlund, J. T., Pui, C. H., Zhou, Y., Behm, F. G., Onciu, M., Razzouk, B. I. et al. Efficient remedy of advanced-stage childhood lymphoblastic lymphoma with out prophylactic cranial irradiation: Outcomes of St Jude NHL13 examine. Leukemia 23, 1127–1130 (2009).

  • Huguet, F., Chevret, S., Leguay, T., Thomas, X., Boissel, N., Escoffre-Barbe, M. et al. Intensified remedy of acute lymphoblastic leukemia in adults: Report of the randomized GRAALL-2005 medical trial. J Clin Oncol 36, 2514–2523 (2018).

  • Oudot, C., Auclerc, M. F., Levy, V., Porcher, R., Piguet, C., Perel, Y. et al. Prognostic components for leukemic induction failure in kids with acute lymphoblastic leukemia and consequence after salvage remedy: The FRALLE 93 examine. J Clin Oncol 26, 1496–1503 (2008).

  • Burkhardt, B., Taj, M., Garnier, N., Minard-Colin, V., Hazar, V., Mellgren, Ok. et al. Therapy and consequence evaluation of 639 relapsed non-hodgkin lymphomas in kids and adolescents and ensuing remedy suggestions. Cancers 13, 2075 (2021).

  • Trinquand, A., Tanguy-Schmidt, A., Abdelali, R. Ben, Lambert, J., Beldjord, Ok., Lengliné, E. et al. Towards a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic danger classification of grownup T-Cell acute lymphoblastic leukemia: a gaggle for analysis in grownup acute lymphoblastic leukemia examine. J Clin Oncol 31, 4333–4342 (2013).

  • Bond, J., Marchand, T., Touzart, A., Cieslak, A., Trinquand, A., Sutton, L. et al. An early thymic precursor phenotype predicts consequence solely in HOXA-overexpressing grownup T-cell acute lymphoblastic leukemia: A bunch for analysis in grownup acute lymphoblastic leukemia examine. Haematologica 101, 732–740 (2016).

  • Alcazer, V. StatAid: An R package deal with a graphical person interface for knowledge evaluation. J. Open Supply Softw 5, 2630 (2020).

  • Dadi, S., Le Noir, S., Payet-Bornet, D., Lhermitte, L., Zacarias-Cabeza, J., Bergeron, J. et al. TLX Homeodomain Oncogenes Mediate T Cell Maturation Arrest in T-ALL by way of Interplay with ETS1 and Suppression of TCRα Gene Expression. Most cancers Cell 21, 563–576 (2012).

  • Cavé, H., Suciu, S., Preudhomme, C., Poppe, B., Robert, A., Uyttebroeck, A. et al. Medical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: Outcomes of EORTC research 58881 and 58951. Blood 103, 442–450 (2004).

  • Ballerini, P., Landman-Parker, J., Cayuela, J. M., Asnafi, V., Labopin, M., Gandemer, V. et al. Impression of genotype on survival of kids with T-cell acute lymphoblastic leukemia handled in line with the French protocol FRALLE-93: the impact of TLX3/HOX11L2 gene expression on consequence. Haematologica 93, 1658–1665 (2008).

  • Balbach, S. T., Makarova, O., Bonn, B. R., Zimmermann, M., Oschlies, I., Klapper, W. et al. Proposal of a genetic classifier for danger group stratification in pediatric T-cell lymphoblastic lymphoma reveals variations from grownup T-cell lymphoblastic leukemia. Leukemia vol. 30 970–973 (2016).

  • Khanam, T., Sandmann, S., Seggewiss, J., Ruether, C., Zimmermann, M., Norvil, A. B. et al. I Integrative genomic evaluation of pediatric T-cell lymphoblastic lymphoma reveals candidates of medical significance. Blood 137, 2347–2359 (2021).

  • Gutierrez, A., Sanda, T., Grebliunaite, R., Carracedo, A., Salmena, L., Ahn, Y. et al. Excessive frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 114, 647–650 (2009).

  • Zuurbier, L., Petricoin, E. F., Vuerhard, M. J., Calvert, V., Kooi, C., Buijs- Gladdines, J. G. C. A. M. et al. The importance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia. Haematologica 97, 1405–1413 (2012).

  • Li, Z., Track, Y., Zhang, Y., Li, C., Wang, Y., Xue, W. et al. Genomic and consequence evaluation of grownup T-cell lymphoblastic lymphoma. Haematologica vol. 105 E107–E110 (2020).

  • Fayard, E., Moncayo, G., Hemmings, B. A. & Holländer, G. A. Phosphatidylinositol 3-kinase signaling in thymocytes: The necessity for stringent management. Sci Sign. 3, 1–13 (2010).

  • Chen, Y., Hou, Q., Yan, W., J, L., D, C., Z, L. et al. PIK3CA is vital for the proliferation, invasiveness, and drug resistance of human tongue carcinoma cells. Oncol Res. 19, 563–571 (2011).

  • Matsuoka, T., Yashiro, M., Nishioka, N., Hirakawa, Ok., Olden, Ok. & Roberts, J. D. PI3K/Akt signalling is required for the attachment and spreading, and progress in vivo of metastatic scirrhous gastric carcinoma. Br J Most cancers 106, 1535–1542 (2012).

  • Li, B., Xu, W., Lam, A., Y, W., HF, H., XY, G. et al. S Significance of PI3K/AKT signaling pathway in metastasis of esophageal squamous cell carcinoma and its potential as a goal for anti-metastasis remedy. Oncotarget 8, 38755–38766 (2017).

  • Hirsch, E., Ciraolo, E., Franco, I., Ghigo, A. & Martini, M. PI3K in most cancers–stroma interactions: unhealthy in seed and ugly in soil. Oncogene 2014 33:24 33, 3083–3090 (2013).

  • Venot, Q., Blanc, T., Rabia, S. H., Berteloot, L., Ladraa, S. & Duong, J. et al. Focused remedy in sufferers with PIK3CA-related overgrowth syndrome. Nature 558, 540–546 (2021).

  • André, F., Ciruelos, E., Rubovszky, G., Campone, M., Loibl, S., Rugo, H. S. et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor–Constructive Superior Breast Most cancers. N Engl J Med. 380, 1929–1940 (2019).

  • Weng, A. P., Ferrando, A. A., Lee, W., Morris IV, J. P., Silverman, L. B., Sanchez- Irizarry, C. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

  • Aref, S., el Agdar, M., Salama, O., Zeid, T. A. & Sabry, M. Significance of NOTCH1 mutations detections in T-acute lymphoblastic leukemia sufferers. Most cancers Biomark 27, 157–162 (2020).

  • Clappier, E., Collette, S., Grardel, N., Girard, S., Suarez, L., Brunie, G. et al. NOTCH1 and FBXW7 mutations have a good impression on early response to remedy, however not on consequence, in kids with T-cell acute lymphoblastic leukemia (T-ALL) handled on EORTC trials 58881 and 58951. Leukemia 24, 2023–2031 (2010).

  • Breit, S., Stanulla, M., Flohr, T., Schrappe, M., Ludwig, W. D., Tolle, G. et al. Activating NOTCH1 mutations predict favorable early remedy response and long-term consequence in childhood precursor T-cell lymphoblastic leukemia. Blood 108, 1151–1157 (2006).

  • Bonn, B. R., Rohde, M., Zimmermann, M., Krieger, D., Oschlies, I., Niggli, F. et al. Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. Blood 121, 3153–3160 (2013).

  • Lepretre, S., Touzart, A., Vermeulin, T., Picquenot, J. M., Tanguy-Schmidt, A., Salles, G. et al. Pediatric-like acute lymphoblastic leukemia remedy in adults with lymphoblastic lymphoma: the GRAALL-LYSA LL03 examine. J Clin Oncol. 34, 572–580 (2016).

  • Schäfer, V., Ernst, J., Rinke, J., Winkelmann, N., Beck, J. F., Hochhaus, A. et al. EZH2 mutations and promoter hypermethylation in childhood acute lymphoblastic leukemia. J Most cancers Res Clin Oncol 142, 1641–1650 (2016).

  • Ntziachristos, P., Tsirigos, A., Vlierberghe, P. Van, Nedjic, J., Trimarchi, T.,Flaherty, M. S. et al. Genetic inactivation of the polycomb repressive advanced 2 in T cell acute lymphoblastic leukemia. Nat Med 18, 296–301 (2012).

  • Andrieu, G. P., Kohn, M., Simonin, M., Smith, C., Cieslak, A., Dourthe, M.-E. et al. PRC2 lack of operate confers a targetable vulnerability to BET proteins in T-ALL. Blood 138, 1855–1869 (2021).

  • Broux, M., Prieto, C., Demeyer, S., Bempt, M. vanden, Alberti-Servera, L., Lodewijckx, I. et al. Suz12 inactivation cooperates with JAK3 mutant signaling within the growth of T-cell acute lymphoblastic leukemia. Blood 134, 1323-1336 (2019).

  • Yuan, S., Wang, X., Hou, S., Guo, T., Lan, Y., Yang, S. et al. PHF6 and JAK3 mutations cooperate to drive T-cell acute lymphoblastic leukemia development. Leukemia 36, 370–382 (2022).

  • Kurzer, J. H. & Weinberg, O. Ok. PHF6 mutations in hematologic malignancies. Entrance Oncol 11, 704471 (2021).

  • Liu, Y., Easton, J., Shao, Y., Maciaszek, J., Wang, Z., Wilkinson, M. R. et al. The genomic panorama of pediatric and younger grownup T-lineage acute lymphoblastic leukemia. Nat Genet 49, 1211–1218 (2017).

  • Zhang, H., Wang, H., Qian, X., Gao, S., Xia, J., Liu, J. et al Genetic mutational evaluation of pediatric acute lymphoblastic leukemia from a single heart in China utilizing exon sequencing. BMC Most cancers 20, 211 (2020).

  • Stengel, A., Kern, W., Haferlach, T., Schnittger, S., Zenger, M. & Haferlach, C. Comparability of TP53 Alterations in Hematological Malignancies. Blood 126, 4819–4819 (2015).

  • Cluzeau, T., Sebert, M., Rahmé, R., Cuzzubbo, S., Lehmann-Che, J., Madelaine, I. et al. Eprenetapopt Plus Azacitidine In TP53-mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia: A Part Ii Examine by the Groupe Francophone des Myélodysplasies (GFM). J Clin Oncol 39, 1575–1583 (2021).

  • Sallman, D. A., DeZern, A. E., Garcia-Manero, G., Steensma, D. P., Roboz, G. J., Sekeres, M. A. et al. Eprenetapopt (APR-246) and Azacitidine in TP53 -Mutant Myelodysplastic Syndromes. J Clin Oncol 39, 1584–1594 (2021).

  • Li, Y., Buijs-Gladdines, J. G. C. A. M., Canté-Barrett, Ok., Stubbs, A. P., Vroegindeweij, E. M., Smits, W. Ok. et al. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T Cell Acute Lymphoblastic Leukemia: A Genome Sequencing Examine. PLoS Med 13, e1002200 (2016).

  • Delgado-Martin, C., Meyer, L. Ok., Huang, B. J., Shimano, Ok. A., Zinter, M. S., Nguyen, J. v et al. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia 2017 31:12 31, 2568–2576 (2017).

  • Senkevitch, E., Hixon, J., Andrews, C., Barata, J. T., Li, W. & Durum, S. The JAK inhibitor ruxolitinib is efficient in treating T cell acute lymphoblastic leukemia with acquire of operate mutations in IL-7R alpha. Blood 126, 1330–1330 (2015).

  • Cabannes, A., Schmidt, A., Brissot, E., Balsat, M., Maury, S., Isnard, F. et al. The mix of Venetoclax and Tofacitinib Induced Hematological Responses in Sufferers with Relapse/ Refractory T-ALL with BCL2 Expression and Floor IL7R Expression or IL7R-Pathway Mutations (On Behalf of the GRAALL). Blood 134, 1339 (2019).

  • RELATED ARTICLES

    Most Popular

    Recent Comments