Samstag, Juli 30, 2022
StartMicrobiologyPlant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by...

Plant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial group


  • Jones, J. T. et al. High 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14, 946–961. https://doi.org/10.1111/mpp.12057 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collange, B., Navarrete, M., Peyre, G., Mateille, T. & Tchamitchian, M. Root-knot nematode (Meloidogyne) administration in vegetable crop manufacturing: The problem of an agronomic system evaluation. Crop Prot. 30, 1251–1262. https://doi.org/10.1016/j.cropro.2011.04.016 (2011).

    Article 

    Google Scholar
     

  • Nyaku, S. T., Affokpon, A., Danquah, A. & Brentu, F. C. in Nematology–ideas, prognosis and management (eds Mohammad Manjur Shah & Mohammad Mahamood) 153–182 (IntechOpen, 2017).

  • Desaeger, J., Wram, C. & Zasada, I. New reduced-risk agricultural nematicides-rationale and assessment. J. Nematol. 52, 1 (2020).

    Article 

    Google Scholar
     

  • Dong, L. & Zhang, Okay. Microbial management of plant-parasitic nematodes: a five-party interplay. Plant Soil 288, 31–45. https://doi.org/10.1007/s11104-006-9009-3 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Singh, S., Singh, B. & Singh, A. Nematodes: A risk to sustainability of agriculture. Procedia Environ. Sci. 29, 215–216. https://doi.org/10.1016/j.proenv.2015.07.270 (2015).

    Article 

    Google Scholar
     

  • Oka, Y. Mechanisms of nematode suppression by natural soil amendments—A assessment. Appl. Soil Ecol. 44, 101–115. https://doi.org/10.1016/j.apsoil.2009.11.003 (2010).

    Article 

    Google Scholar
     

  • Yue, X., Li, F. & Wang, B. Exercise of 4 nematicides in opposition to Meloidogyne incognita race 2 on tomato crops. J. Phytopathol. 168, 399–404. https://doi.org/10.1111/jph.12904 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Huang, W.-Okay. et al. Mutations in Acetylcholinesterase2 (ace 2) improve the insensitivity of acetylcholinesterase to fosthiazate within the root-knot nematode Meloidogyne incognita. Sci. Rep. 6, 1–9. https://doi.org/10.1038/srep38102 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Yoon, Y., Kim, E.-S., Hwang, Y.-S. & Choi, C.-Y. Avermectin: Biochemical and molecular foundation of its biosynthesis and regulation. Appl. Microbiol. Biotechnol. 63, 626–634. https://doi.org/10.1007/s00253-003-1491-4 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wolstenholme, A. J. & Rogers, A. Glutamate-gated chloride channels and the mode of motion of the avermectin/milbemycin anthelmintics. Parasitology 131, S85–S95. https://doi.org/10.1017/S0031182005008218 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Haydock, P., Woods, S., Grove, I. & Hare, M. in Plant nematology (eds Roland N Perry & Maurice Moens) 459–479 (CABI, 2013).

  • Forghani, F. & Hajihassani, A. Current advances within the growth of environmentally benign remedies to regulate root-knot nematodes. Entrance. Plant Sci. 11, 1. https://doi.org/10.3389/fpls.2020.01125 (2020).

    Article 

    Google Scholar
     

  • Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mhatre, P. H. et al. Plant development selling rhizobacteria (PGPR): a possible different device for nematodes bio-control. Biocatal. Agr. Biotechnol. 17, 119–128. https://doi.org/10.1016/j.bcab.2018.11.009 (2019).

    Article 

    Google Scholar
     

  • Eissa, M. F. & Abd-Elgawad, M. M. in Biocontrol brokers of phytonematodes (eds Tarique Hassan Askary & Paulo Roberto Martinelli) 217–243 (CABI, 2015).

  • Luo, T., Hou, S., Yang, L., Qi, G. & Zhao, X. Nematodes keep away from and are killed by Bacillus mycoides-produced styrene. J. Invertebr. Pathol. 159, 129–136. https://doi.org/10.1016/j.jip.2018.09.006 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Siddiqui, I. & Shaukat, S. Systemic resistance in tomato induced by biocontrol micro organism in opposition to the root-knot nematode, Meloidogyne javanica is impartial of salicylic acid manufacturing. J. Phytopathol. 152, 48–54. https://doi.org/10.1046/j.1439-0434.2003.00800.x (2004).

    Article 

    Google Scholar
     

  • Li, W. et al. Broad spectrum anti-biotic exercise and illness suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Defend. 21, 129–135. https://doi.org/10.1016/S0261-2194(01)00074-6 (2002).

    Article 

    Google Scholar
     

  • Khanna, Okay. et al. Function of plant development selling Micro organism (PGPRs) as biocontrol brokers of Meloidogyne incognita by improved plant protection of Lycopersicon esculentum. Plant. Soil 436, 325–345. https://doi.org/10.1007/s11104-019-03932-2 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Subedi, P., Gattoni, Okay., Liu, W., Lawrence, Okay. S. & Park, S.-W. Present utility of plant growth-promoting rhizobacteria as organic management brokers in direction of plant-parasitic nematodes. Vegetation 9, 1167. https://doi.org/10.3390/plants9091167 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Oka, Y. et al. New methods for the management of plant-parasitic nematodes. Pest Manag. Sci. 56, 983–988. https://doi.org/10.1002/1526-4998(200011)56:11percent3c983::AID-PS233percent3e3.0.CO;2-X (2000).

    CAS 
    Article 

    Google Scholar
     

  • Ralmi, N. H. A. A., Khandaker, M. M. & Mat, N. Incidence and management of root knot nematode in crops: A assessment. Aust. J. Crop Sci. 11, 1649 (2016).

    Article 

    Google Scholar
     

  • Topalović, O. & Heuer, H. Plant-nematode interactions assisted by microbes within the rhizosphere. Curr. Points Mol. Biol. 30, 75–88 (2019).

    Article 

    Google Scholar
     

  • Olanrewaju, O. S., Ayangbenro, A. S., Glick, B. R. & Babalola, O. O. Plant well being: Suggestions impact of root exudates-rhizobiome interactions. Appl. Microbiol. Biotechnol. 103, 1155–1166. https://doi.org/10.1007/s00253-018-9556-6 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Handley, Okay. M. et al. Biostimulation induces syntrophic interactions that influence C, S and N biking in a sediment microbial group. ISME J. 7, 800–816. https://doi.org/10.1038/ismej.2012.148 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tang, Y. et al. Adjustments in nitrogen-cycling microbial communities with depth in temperate and subtropical forest soils. Appl. Soil Ecol. 124, 218–228. https://doi.org/10.1016/j.apsoil.2017.10.029 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Babić, Okay. H. et al. Affect of various Sinorhizobium meliloti inocula on abundance of genes concerned in nitrogen transformations within the rhizosphere of alfalfa (Medicago sativa L.). Environ. Microbiol. 10, 2922–2930 (2008).

    Article 

    Google Scholar
     

  • Ke, X. et al. Impact of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant development and the microbiome indigenous to the rhizosphere. Syst. Appl. Microbiol. 42, 248–260. https://doi.org/10.1016/j.syapm.2018.10.010 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hogan, G. et al. Microbiome evaluation as a platform R&D device for parasitic nematode illness administration. ISME J. 13, 2664–2680. https://doi.org/10.1038/s41396-019-0462-4 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Draft genome sequence of Stenotrophomonas maltophilia pressure B418, a promising agent for biocontrol of plant pathogens and root-knot nematode. Genome Announc. 3, e00015-00015. https://doi.org/10.1128/genomeA.00015-15 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Isolation and identification of nematicidal lively substance from Burkholderia vietnamiensis B418. Plant Prot. 40, 65–69 (2014).


    Google Scholar
     

  • Li, S., Li, J., Xu, W., Chen, Okay. & Yang, H. Discipline efficacy check of biocontrol agent YKT41 and B418 in opposition to eggplant root-knot nematode illness. Shandong Sci. 24, 10–13 (2011).

    CAS 

    Google Scholar
     

  • Wang, Y., Wang, Z., Liu, B., Pan, M. & Li, J. Discipline trial of Burkholderia vietnamiensis and its composite microbial flora on cucumber root-knot nematode. Shandong Sci. 31, 39. https://doi.org/10.3976/j.issn.1002-4026.2018.01.007 (2018).

    Article 

    Google Scholar
     

  • Saad, A.-F.S., Massoud, M. A., Ibrahim, H. S. & Khalil, M. S. Administration examine for the root-knot nematodes, Meloidogyne incognita on tomatoes utilizing fosthiazate and arbiscular mycorrhiza fungus. J. Adv. Agric. Res. 16, 137–147 (2011).


    Google Scholar
     

  • Huang, W.-Okay. et al. Efficacy analysis of fungus Syncephalastrum racemosum and nematicide avermectin in opposition to the root-knot nematode Meloidogyne incognita on cucumber. PLoS ONE 9, e89717. https://doi.org/10.1371/journal.pone.0089717 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayakumar, J. & Ramakrishnan, S. Analysis of avermectin and its mixture with nematicide and bioagents in opposition to root knot nematode, Meloidogyne incognita in tomato. J. Biol. Management 23, 317–319 (2009).


    Google Scholar
     

  • Moosavi, M. & Zare, R. in Biocontrol Brokers of Phytonematodes (eds Tarique Hassan Askary & Paulo Roberto Martinelli) 423–445 (CABI, 2015).

  • Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant well being. Traits Plant Sci. 17, 478–486. https://doi.org/10.1016/j.tplants.2012.04.001 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Reinhold-Hurek, B., Bünger, W., Burbano, C. S., Sabale, M. & Hurek, T. Roots shaping their microbiome: International hotspots for microbial exercise. Annu. Rev. Phytopathol. 53, 403–424. https://doi.org/10.1146/annurev-phyto-082712-102342 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ahemad, M. & Kibret, M. Mechanisms and functions of plant development selling rhizobacteria: Present perspective. J. King Saud Univ.-Sci. 26, 1–20. https://doi.org/10.1016/j.jksus.2013.05.001 (2014).

    Article 

    Google Scholar
     

  • Ciccillo, F. et al. Results of two completely different utility strategies of Burkholderia ambifaria MCI 7 on plant development and rhizospheric bacterial range. Environ. Microbiol. 4, 238–245. https://doi.org/10.1046/j.1462-2920.2002.00291.x (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Jo, H. et al. Response of soil bacterial group and pepper plant development to utility of Bacillus thuringiensis KNU-07. Agronomy 10, 551. https://doi.org/10.3390/agronomy10040551 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, J. et al. Traits-based integration of multi-species inoculants facilitates shifts of indigenous soil bacterial group. Entrance. Microbiol. 9, 1692. https://doi.org/10.3389/fmicb.2018.01692 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welbaum, G. E., Sturz, A. V., Dong, Z. & Nowak, J. Managing soil microorganisms to enhance productiveness of agro-ecosystems. Crit. Rev. Plant Sci. 23, 175–193. https://doi.org/10.1080/07352680490433295 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant useful, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663. https://doi.org/10.1111/1574-6976.12028 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Trichoderma harzianum inoculation reduces the incidence of clubroot illness in Chinese language cabbage by regulating the rhizosphere microbial group. Microorganisms 8, 1325. https://doi.org/10.3390/microorganisms8091325 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Tune, L. et al. Common biochar and bacteria-inoculated biochar alter the composition of the microbial group within the soil of a Chinese language fir plantation. Forests 11, 951. https://doi.org/10.3390/f11090951 (2020).

    Article 

    Google Scholar
     

  • Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive micro organism. Science 332, 1097–1100. https://doi.org/10.1126/science.1203980 (2011).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Palaniyandi, S. A., Yang, S. H., Zhang, L. & Suh, J.-W. Results of actinobacteria on plant illness suppression and development promotion. Appl. Microbiol. Biotechnol. 97, 9621–9636. https://doi.org/10.1007/s00253-013-5206-1 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhou, D. et al. Rhizosphere microbiomes from root knot nematode non-infested crops suppress nematode an infection. Microbial Ecol. 78, 470–481. https://doi.org/10.1007/s00248-019-01319-5 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Zou, Y. et al. Metagenomic insights into the impact of oxytetracycline on microbial constructions, capabilities and purposeful genes in sediment denitrification. Ecotox. Environ. Protected. 161, 85–91. https://doi.org/10.1016/j.ecoenv.2018.05.045 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kong, Z. et al. Seasonal dynamics of the bacterioplankton group in a big, shallow, extremely dynamic freshwater lake. Can. J. Microbiol. 64, 786–797. https://doi.org/10.1139/cjm-2018-0126 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bach, E. M., Williams, R. J., Hargreaves, S. Okay., Yang, F. & Hofmockel, Okay. S. Best soil microbial range present in micro-habitats. Soil Biol. Biochem. 118, 217–226. https://doi.org/10.1016/j.soilbio.2017.12.018 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wang, W. et al. Predatory Myxococcales are broadly distributed in and carefully correlated with the bacterial group construction of agricultural land. Appl. Soil Ecol. 146, 103365. https://doi.org/10.1016/j.apsoil.2019.103365 (2020).

    Article 

    Google Scholar
     

  • Schmidt, J. E., Kent, A. D., Brisson, V. L. & Gaudin, A. C. Agricultural administration and plant choice interactively have an effect on rhizosphere microbial group construction and nitrogen biking. Microbiome 7, 1–18. https://doi.org/10.1186/s40168-019-0756-9 (2019).

    Article 

    Google Scholar
     

  • Hu, W., Strom, N., Haarith, D., Chen, S. & Bushley, Okay. E. Mycobiome of cysts of the soybean cyst nematode below long run crop rotation. Entrance. Microbiol. 9, 386. https://doi.org/10.3389/fmicb.2018.00386 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W.-H. & Liu, Q.-Z. Adjustments in fungal group and variety in strawberry rhizosphere soil after 12 years within the greenhouse. J. Integ. Agric. 18, 677–687. https://doi.org/10.1016/S2095-3119(18)62003-9 (2019).

    Article 

    Google Scholar
     

  • Qiu, W. et al. Natural fertilization assembles fungal communities of wheat rhizosphere soil and suppresses the inhabitants development of Heterodera avenae within the area. Entrance. Plant Sci. 11, 1225. https://doi.org/10.3389/fpls.2020.01225 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schardl, C. L., Leuchtmann, A. & Spiering, M. J. Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 55, 315–340. https://doi.org/10.1146/annurev.arplant.55.031903.141735 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Edgington, S., Thompson, E., Moore, D., Hughes, Okay. A. & Bridge, P. Investigating the insecticidal potential of Geomyces (Myxotrichaceae: Helotiales) and Mortierella (Mortierellacea: Mortierellales) remoted from Antarctica. Springerplus 3, 1–8. https://doi.org/10.1186/2193-1801-3-289 (2014).

    Article 

    Google Scholar
     

  • Yi, X. et al. Comparability of the abundance and group construction of N-Biking micro organism in paddy rhizosphere soil below completely different rice cultivation patterns. Int. J. Mol. Sci. 19, 3772. https://doi.org/10.3390/ijms19123772 (2018).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Duval, S. et al. Electron switch precedes ATP hydrolysis throughout nitrogenase catalysis. Proc. Natl. Acad. Sci. USA 110, 16414–16419. https://doi.org/10.1073/pnas.1311218110 (2013).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pham, V. T. et al. The plant growth-promoting impact of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Arch. Microbiol. 199, 513–517. https://doi.org/10.1007/s00203-016-1332-3 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ouyang, Y., Evans, S. E., Friesen, M. L. & Tiemann, L. Okay. Impact of nitrogen fertilization on the abundance of nitrogen biking genes in agricultural soils: a meta-analysis of area research. Soil Biol. Biochem. 127, 71–78. https://doi.org/10.1016/j.soilbio.2018.08.024 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Dynarski, Okay. A. & Houlton, B. Z. Nutrient limitation of terrestrial free-living nitrogen fixation. New Phytol. 217, 1050–1061. https://doi.org/10.1111/nph.14905 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kastl, E.-M., Schloter-Hai, B., Buegger, F. & Schloter, M. Impression of fertilization on the abundance of nitrifiers and denitrifiers on the root–soil interface of crops with completely different uptake methods for nitrogen. Biol. Fert. Soils 51, 57–64. https://doi.org/10.1007/s00374-014-0948-1 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Bulgarelli, D. et al. Revealing construction and meeting cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95. https://doi.org/10.1038/nature11336 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Southey, J. in Laboratory strategies for work with crops and soil nematodes (ed JF Southey) 42–44 (HMSO, 1986).

  • Ladner, D. C., Tchounwou, P. B. & Lawrence, G. W. Analysis of the impact of ecologic on root knot nematode, Meloidogyne incognita, and tomato plant, Lycopersicon esculenum. Int. J. Environ. Res. Public Well being 5, 104–110. https://doi.org/10.3390/ijerph5020104 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu, D.-D. et al. Utility of PSX biocontrol preparation confers root-knot nematode administration and elevated fruit high quality in tomato below area circumstances. Biocontrol Sci. Technol. 26, 174–180. https://doi.org/10.1080/09583157.2015.1085489.18 (2016).

    Article 

    Google Scholar
     

  • Klindworth, A. et al. Analysis of normal 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based range research. Nucl. Acids Res. 41, e1–e1. https://doi.org/10.1093/nar/gks808 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Buee, M. et al. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly excessive fungal range. New Phytol. 184, 449–456. https://doi.org/10.1111/j.1469-8137.2009.03003.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rösch, C., Mergel, A. & Bothe, H. Biodiversity of denitrifying and dinitrogen-fixing micro organism in an acid forest soil. Appl. Environ. Microbiol. 68, 3818–3829. https://doi.org/10.1128/AEM.68.8.3818-3829.2002 (2002).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Throbäck, I. N., Enwall, Okay., Jarvis, Å. & Hallin, S. Reassessing PCR primers focusing on nirS, nirK and nosZ genes for group surveys of denitrifying micro organism with DGGE. FEMS Microbiol. Ecol. 49, 401–417. https://doi.org/10.1016/j.femsec.2004.04.011 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and pace of chimera detection. Bioinformatics 27, 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caporaso, J. G. et al. QIIME permits evaluation of high-throughput group sequencing information. Nat. Strategies 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database undertaking: improved information processing and web-based instruments. Nucl. Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 1–21. https://doi.org/10.1186/s13059-014-0550-8 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Lozupone, C. & Knight, R. UniFrac: A brand new phylogenetic technique for evaluating microbial communities. Appl. Environ. Microbiol. 71, 8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005 (2005).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical evaluation of taxonomic and purposeful profiles. Bioinformatics 30, 3123–3124. https://doi.org/10.1093/bioinformatics/btu494 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Is Life Straightforward

    Is Life Lovely

    Is Life A Sport

    Recent Comments