Jones, J. T. et al. High 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14, 946–961. https://doi.org/10.1111/mpp.12057 (2013).
Collange, B., Navarrete, M., Peyre, G., Mateille, T. & Tchamitchian, M. Root-knot nematode (Meloidogyne) administration in vegetable crop manufacturing: The problem of an agronomic system evaluation. Crop Prot. 30, 1251–1262. https://doi.org/10.1016/j.cropro.2011.04.016 (2011).
Nyaku, S. T., Affokpon, A., Danquah, A. & Brentu, F. C. in Nematology–ideas, prognosis and management (eds Mohammad Manjur Shah & Mohammad Mahamood) 153–182 (IntechOpen, 2017).
Desaeger, J., Wram, C. & Zasada, I. New reduced-risk agricultural nematicides-rationale and assessment. J. Nematol. 52, 1 (2020).
Dong, L. & Zhang, Okay. Microbial management of plant-parasitic nematodes: a five-party interplay. Plant Soil 288, 31–45. https://doi.org/10.1007/s11104-006-9009-3 (2006).
Singh, S., Singh, B. & Singh, A. Nematodes: A risk to sustainability of agriculture. Procedia Environ. Sci. 29, 215–216. https://doi.org/10.1016/j.proenv.2015.07.270 (2015).
Oka, Y. Mechanisms of nematode suppression by natural soil amendments—A assessment. Appl. Soil Ecol. 44, 101–115. https://doi.org/10.1016/j.apsoil.2009.11.003 (2010).
Yue, X., Li, F. & Wang, B. Exercise of 4 nematicides in opposition to Meloidogyne incognita race 2 on tomato crops. J. Phytopathol. 168, 399–404. https://doi.org/10.1111/jph.12904 (2020).
Huang, W.-Okay. et al. Mutations in Acetylcholinesterase2 (ace 2) improve the insensitivity of acetylcholinesterase to fosthiazate within the root-knot nematode Meloidogyne incognita. Sci. Rep. 6, 1–9. https://doi.org/10.1038/srep38102 (2016).
Yoon, Y., Kim, E.-S., Hwang, Y.-S. & Choi, C.-Y. Avermectin: Biochemical and molecular foundation of its biosynthesis and regulation. Appl. Microbiol. Biotechnol. 63, 626–634. https://doi.org/10.1007/s00253-003-1491-4 (2004).
Wolstenholme, A. J. & Rogers, A. Glutamate-gated chloride channels and the mode of motion of the avermectin/milbemycin anthelmintics. Parasitology 131, S85–S95. https://doi.org/10.1017/S0031182005008218 (2005).
Haydock, P., Woods, S., Grove, I. & Hare, M. in Plant nematology (eds Roland N Perry & Maurice Moens) 459–479 (CABI, 2013).
Forghani, F. & Hajihassani, A. Current advances within the growth of environmentally benign remedies to regulate root-knot nematodes. Entrance. Plant Sci. 11, 1. https://doi.org/10.3389/fpls.2020.01125 (2020).
Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918 (2009).
Mhatre, P. H. et al. Plant development selling rhizobacteria (PGPR): a possible different device for nematodes bio-control. Biocatal. Agr. Biotechnol. 17, 119–128. https://doi.org/10.1016/j.bcab.2018.11.009 (2019).
Eissa, M. F. & Abd-Elgawad, M. M. in Biocontrol brokers of phytonematodes (eds Tarique Hassan Askary & Paulo Roberto Martinelli) 217–243 (CABI, 2015).
Luo, T., Hou, S., Yang, L., Qi, G. & Zhao, X. Nematodes keep away from and are killed by Bacillus mycoides-produced styrene. J. Invertebr. Pathol. 159, 129–136. https://doi.org/10.1016/j.jip.2018.09.006 (2018).
Siddiqui, I. & Shaukat, S. Systemic resistance in tomato induced by biocontrol micro organism in opposition to the root-knot nematode, Meloidogyne javanica is impartial of salicylic acid manufacturing. J. Phytopathol. 152, 48–54. https://doi.org/10.1046/j.1439-0434.2003.00800.x (2004).
Li, W. et al. Broad spectrum anti-biotic exercise and illness suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Defend. 21, 129–135. https://doi.org/10.1016/S0261-2194(01)00074-6 (2002).
Khanna, Okay. et al. Function of plant development selling Micro organism (PGPRs) as biocontrol brokers of Meloidogyne incognita by improved plant protection of Lycopersicon esculentum. Plant. Soil 436, 325–345. https://doi.org/10.1007/s11104-019-03932-2 (2019).
Subedi, P., Gattoni, Okay., Liu, W., Lawrence, Okay. S. & Park, S.-W. Present utility of plant growth-promoting rhizobacteria as organic management brokers in direction of plant-parasitic nematodes. Vegetation 9, 1167. https://doi.org/10.3390/plants9091167 (2020).
Oka, Y. et al. New methods for the management of plant-parasitic nematodes. Pest Manag. Sci. 56, 983–988. https://doi.org/10.1002/1526-4998(200011)56:11percent3c983::AID-PS233percent3e3.0.CO;2-X (2000).
Ralmi, N. H. A. A., Khandaker, M. M. & Mat, N. Incidence and management of root knot nematode in crops: A assessment. Aust. J. Crop Sci. 11, 1649 (2016).
Topalović, O. & Heuer, H. Plant-nematode interactions assisted by microbes within the rhizosphere. Curr. Points Mol. Biol. 30, 75–88 (2019).
Olanrewaju, O. S., Ayangbenro, A. S., Glick, B. R. & Babalola, O. O. Plant well being: Suggestions impact of root exudates-rhizobiome interactions. Appl. Microbiol. Biotechnol. 103, 1155–1166. https://doi.org/10.1007/s00253-018-9556-6 (2019).
Handley, Okay. M. et al. Biostimulation induces syntrophic interactions that influence C, S and N biking in a sediment microbial group. ISME J. 7, 800–816. https://doi.org/10.1038/ismej.2012.148 (2013).
Tang, Y. et al. Adjustments in nitrogen-cycling microbial communities with depth in temperate and subtropical forest soils. Appl. Soil Ecol. 124, 218–228. https://doi.org/10.1016/j.apsoil.2017.10.029 (2018).
Babić, Okay. H. et al. Affect of various Sinorhizobium meliloti inocula on abundance of genes concerned in nitrogen transformations within the rhizosphere of alfalfa (Medicago sativa L.). Environ. Microbiol. 10, 2922–2930 (2008).
Ke, X. et al. Impact of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant development and the microbiome indigenous to the rhizosphere. Syst. Appl. Microbiol. 42, 248–260. https://doi.org/10.1016/j.syapm.2018.10.010 (2019).
Hogan, G. et al. Microbiome evaluation as a platform R&D device for parasitic nematode illness administration. ISME J. 13, 2664–2680. https://doi.org/10.1038/s41396-019-0462-4 (2019).
Wu, Y. et al. Draft genome sequence of Stenotrophomonas maltophilia pressure B418, a promising agent for biocontrol of plant pathogens and root-knot nematode. Genome Announc. 3, e00015-00015. https://doi.org/10.1128/genomeA.00015-15 (2015).
Wang, Y. et al. Isolation and identification of nematicidal lively substance from Burkholderia vietnamiensis B418. Plant Prot. 40, 65–69 (2014).
Li, S., Li, J., Xu, W., Chen, Okay. & Yang, H. Discipline efficacy check of biocontrol agent YKT41 and B418 in opposition to eggplant root-knot nematode illness. Shandong Sci. 24, 10–13 (2011).
Wang, Y., Wang, Z., Liu, B., Pan, M. & Li, J. Discipline trial of Burkholderia vietnamiensis and its composite microbial flora on cucumber root-knot nematode. Shandong Sci. 31, 39. https://doi.org/10.3976/j.issn.1002-4026.2018.01.007 (2018).
Saad, A.-F.S., Massoud, M. A., Ibrahim, H. S. & Khalil, M. S. Administration examine for the root-knot nematodes, Meloidogyne incognita on tomatoes utilizing fosthiazate and arbiscular mycorrhiza fungus. J. Adv. Agric. Res. 16, 137–147 (2011).
Huang, W.-Okay. et al. Efficacy analysis of fungus Syncephalastrum racemosum and nematicide avermectin in opposition to the root-knot nematode Meloidogyne incognita on cucumber. PLoS ONE 9, e89717. https://doi.org/10.1371/journal.pone.0089717 (2014).
Jayakumar, J. & Ramakrishnan, S. Analysis of avermectin and its mixture with nematicide and bioagents in opposition to root knot nematode, Meloidogyne incognita in tomato. J. Biol. Management 23, 317–319 (2009).
Moosavi, M. & Zare, R. in Biocontrol Brokers of Phytonematodes (eds Tarique Hassan Askary & Paulo Roberto Martinelli) 423–445 (CABI, 2015).
Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant well being. Traits Plant Sci. 17, 478–486. https://doi.org/10.1016/j.tplants.2012.04.001 (2012).
Reinhold-Hurek, B., Bünger, W., Burbano, C. S., Sabale, M. & Hurek, T. Roots shaping their microbiome: International hotspots for microbial exercise. Annu. Rev. Phytopathol. 53, 403–424. https://doi.org/10.1146/annurev-phyto-082712-102342 (2015).
Ahemad, M. & Kibret, M. Mechanisms and functions of plant development selling rhizobacteria: Present perspective. J. King Saud Univ.-Sci. 26, 1–20. https://doi.org/10.1016/j.jksus.2013.05.001 (2014).
Ciccillo, F. et al. Results of two completely different utility strategies of Burkholderia ambifaria MCI 7 on plant development and rhizospheric bacterial range. Environ. Microbiol. 4, 238–245. https://doi.org/10.1046/j.1462-2920.2002.00291.x (2002).
Jo, H. et al. Response of soil bacterial group and pepper plant development to utility of Bacillus thuringiensis KNU-07. Agronomy 10, 551. https://doi.org/10.3390/agronomy10040551 (2020).
Wang, J. et al. Traits-based integration of multi-species inoculants facilitates shifts of indigenous soil bacterial group. Entrance. Microbiol. 9, 1692. https://doi.org/10.3389/fmicb.2018.01692 (2018).
Welbaum, G. E., Sturz, A. V., Dong, Z. & Nowak, J. Managing soil microorganisms to enhance productiveness of agro-ecosystems. Crit. Rev. Plant Sci. 23, 175–193. https://doi.org/10.1080/07352680490433295 (2004).
Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant useful, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663. https://doi.org/10.1111/1574-6976.12028 (2013).
Li, J. et al. Trichoderma harzianum inoculation reduces the incidence of clubroot illness in Chinese language cabbage by regulating the rhizosphere microbial group. Microorganisms 8, 1325. https://doi.org/10.3390/microorganisms8091325 (2020).
Tune, L. et al. Common biochar and bacteria-inoculated biochar alter the composition of the microbial group within the soil of a Chinese language fir plantation. Forests 11, 951. https://doi.org/10.3390/f11090951 (2020).
Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive micro organism. Science 332, 1097–1100. https://doi.org/10.1126/science.1203980 (2011).
Palaniyandi, S. A., Yang, S. H., Zhang, L. & Suh, J.-W. Results of actinobacteria on plant illness suppression and development promotion. Appl. Microbiol. Biotechnol. 97, 9621–9636. https://doi.org/10.1007/s00253-013-5206-1 (2013).
Zhou, D. et al. Rhizosphere microbiomes from root knot nematode non-infested crops suppress nematode an infection. Microbial Ecol. 78, 470–481. https://doi.org/10.1007/s00248-019-01319-5 (2019).
Zou, Y. et al. Metagenomic insights into the impact of oxytetracycline on microbial constructions, capabilities and purposeful genes in sediment denitrification. Ecotox. Environ. Protected. 161, 85–91. https://doi.org/10.1016/j.ecoenv.2018.05.045 (2018).
Kong, Z. et al. Seasonal dynamics of the bacterioplankton group in a big, shallow, extremely dynamic freshwater lake. Can. J. Microbiol. 64, 786–797. https://doi.org/10.1139/cjm-2018-0126 (2018).
Bach, E. M., Williams, R. J., Hargreaves, S. Okay., Yang, F. & Hofmockel, Okay. S. Best soil microbial range present in micro-habitats. Soil Biol. Biochem. 118, 217–226. https://doi.org/10.1016/j.soilbio.2017.12.018 (2018).
Wang, W. et al. Predatory Myxococcales are broadly distributed in and carefully correlated with the bacterial group construction of agricultural land. Appl. Soil Ecol. 146, 103365. https://doi.org/10.1016/j.apsoil.2019.103365 (2020).
Schmidt, J. E., Kent, A. D., Brisson, V. L. & Gaudin, A. C. Agricultural administration and plant choice interactively have an effect on rhizosphere microbial group construction and nitrogen biking. Microbiome 7, 1–18. https://doi.org/10.1186/s40168-019-0756-9 (2019).
Hu, W., Strom, N., Haarith, D., Chen, S. & Bushley, Okay. E. Mycobiome of cysts of the soybean cyst nematode below long run crop rotation. Entrance. Microbiol. 9, 386. https://doi.org/10.3389/fmicb.2018.00386 (2018).
Li, W.-H. & Liu, Q.-Z. Adjustments in fungal group and variety in strawberry rhizosphere soil after 12 years within the greenhouse. J. Integ. Agric. 18, 677–687. https://doi.org/10.1016/S2095-3119(18)62003-9 (2019).
Qiu, W. et al. Natural fertilization assembles fungal communities of wheat rhizosphere soil and suppresses the inhabitants development of Heterodera avenae within the area. Entrance. Plant Sci. 11, 1225. https://doi.org/10.3389/fpls.2020.01225 (2020).
Schardl, C. L., Leuchtmann, A. & Spiering, M. J. Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 55, 315–340. https://doi.org/10.1146/annurev.arplant.55.031903.141735 (2004).
Edgington, S., Thompson, E., Moore, D., Hughes, Okay. A. & Bridge, P. Investigating the insecticidal potential of Geomyces (Myxotrichaceae: Helotiales) and Mortierella (Mortierellacea: Mortierellales) remoted from Antarctica. Springerplus 3, 1–8. https://doi.org/10.1186/2193-1801-3-289 (2014).
Yi, X. et al. Comparability of the abundance and group construction of N-Biking micro organism in paddy rhizosphere soil below completely different rice cultivation patterns. Int. J. Mol. Sci. 19, 3772. https://doi.org/10.3390/ijms19123772 (2018).
Duval, S. et al. Electron switch precedes ATP hydrolysis throughout nitrogenase catalysis. Proc. Natl. Acad. Sci. USA 110, 16414–16419. https://doi.org/10.1073/pnas.1311218110 (2013).
Pham, V. T. et al. The plant growth-promoting impact of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Arch. Microbiol. 199, 513–517. https://doi.org/10.1007/s00203-016-1332-3 (2017).
Ouyang, Y., Evans, S. E., Friesen, M. L. & Tiemann, L. Okay. Impact of nitrogen fertilization on the abundance of nitrogen biking genes in agricultural soils: a meta-analysis of area research. Soil Biol. Biochem. 127, 71–78. https://doi.org/10.1016/j.soilbio.2018.08.024 (2018).
Dynarski, Okay. A. & Houlton, B. Z. Nutrient limitation of terrestrial free-living nitrogen fixation. New Phytol. 217, 1050–1061. https://doi.org/10.1111/nph.14905 (2018).
Kastl, E.-M., Schloter-Hai, B., Buegger, F. & Schloter, M. Impression of fertilization on the abundance of nitrifiers and denitrifiers on the root–soil interface of crops with completely different uptake methods for nitrogen. Biol. Fert. Soils 51, 57–64. https://doi.org/10.1007/s00374-014-0948-1 (2015).
Bulgarelli, D. et al. Revealing construction and meeting cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95. https://doi.org/10.1038/nature11336 (2012).
Southey, J. in Laboratory strategies for work with crops and soil nematodes (ed JF Southey) 42–44 (HMSO, 1986).
Ladner, D. C., Tchounwou, P. B. & Lawrence, G. W. Analysis of the impact of ecologic on root knot nematode, Meloidogyne incognita, and tomato plant, Lycopersicon esculenum. Int. J. Environ. Res. Public Well being 5, 104–110. https://doi.org/10.3390/ijerph5020104 (2008).
Niu, D.-D. et al. Utility of PSX biocontrol preparation confers root-knot nematode administration and elevated fruit high quality in tomato below area circumstances. Biocontrol Sci. Technol. 26, 174–180. https://doi.org/10.1080/09583157.2015.1085489.18 (2016).
Klindworth, A. et al. Analysis of normal 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based range research. Nucl. Acids Res. 41, e1–e1. https://doi.org/10.1093/nar/gks808 (2013).
Buee, M. et al. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly excessive fungal range. New Phytol. 184, 449–456. https://doi.org/10.1111/j.1469-8137.2009.03003.x (2009).
Rösch, C., Mergel, A. & Bothe, H. Biodiversity of denitrifying and dinitrogen-fixing micro organism in an acid forest soil. Appl. Environ. Microbiol. 68, 3818–3829. https://doi.org/10.1128/AEM.68.8.3818-3829.2002 (2002).
Throbäck, I. N., Enwall, Okay., Jarvis, Å. & Hallin, S. Reassessing PCR primers focusing on nirS, nirK and nosZ genes for group surveys of denitrifying micro organism with DGGE. FEMS Microbiol. Ecol. 49, 401–417. https://doi.org/10.1016/j.femsec.2004.04.011 (2004).
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and pace of chimera detection. Bioinformatics 27, 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011).
Caporaso, J. G. et al. QIIME permits evaluation of high-throughput group sequencing information. Nat. Strategies 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).
Quast, C. et al. The SILVA ribosomal RNA gene database undertaking: improved information processing and web-based instruments. Nucl. Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 1–21. https://doi.org/10.1186/s13059-014-0550-8 (2014).
Lozupone, C. & Knight, R. UniFrac: A brand new phylogenetic technique for evaluating microbial communities. Appl. Environ. Microbiol. 71, 8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005 (2005).
Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical evaluation of taxonomic and purposeful profiles. Bioinformatics 30, 3123–3124. https://doi.org/10.1093/bioinformatics/btu494 (2014).