Dienstag, August 2, 2022
StartMicrobiologyPure extracts, honey, and propolis as human norovirus inhibitors

Pure extracts, honey, and propolis as human norovirus inhibitors


  • Patel, M. M., Corridor, A. J., Vinje, J. & Parashar, U. D. Noroviruses: A complete overview. J. Clin. Virol. 44, 1–8. https://doi.org/10.1016/j.jcv.2008.10.009 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chhabra, P. et al. Up to date classification of norovirus genogroups and genotypes. J. Gen. Virol. 100, 1393–1406. https://doi.org/10.1099/jgv.0.001318 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, J. et al. Excessive-resolution cryo-EM constructions of outbreak pressure human norovirus shells reveal dimension variations. Proc. Natl. Acad. Sci. USA 116, 12828–12832. https://doi.org/10.1073/pnas.1903562116 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devant, J. M., Hofhaus, G., Bhella, D. & Hansman, G. S. Heterologous expression of human norovirus GII.4 VP1 results in meeting of T=4 virus-like particles. Antivir. Res. 168, 175–182. https://doi.org/10.1016/j.antiviral.2019.05.010 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Koromyslova, A. D. & Hansman, G. S. Nanobodies concentrating on norovirus capsid reveal purposeful epitopes and potential mechanisms of neutralization. PLoS Pathog. 13, e1006636. https://doi.org/10.1371/journal.ppat.1006636 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koromyslova, A. D. & Hansman, G. S. Nanobody binding to a conserved epitope promotes norovirus particle disassembly. J. Virol. 89, 2718–2730. https://doi.org/10.1128/JVI.03176-14 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liu, W. et al. A singular human norovirus lineage with a definite HBGA binding interface. PLoS Pathog. 11, e1005025. https://doi.org/10.1371/journal.ppat.1005025 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, N. et al. Crystal constructions of GI.8 Boxer virus P dimers in complicated with HBGAs, a novel evolutionary path chosen by the Lewis epitope. Protein Cell 6, 101–116. https://doi.org/10.1007/s13238-014-0126-0 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Singh, B. Okay., Leuthold, M. M. & Hansman, G. S. Structural constraints on human norovirus binding to histo-blood group antigens. mSphere 1, e00049-00016. https://doi.org/10.1128/mSphere.00049-16 (2016).

    Article 

    Google Scholar
     

  • Singh, B. Okay., Leuthold, M. M. & Hansman, G. S. Human noroviruses’ fondness for histo-blood group antigens. J. Virol. 89, 2024–2040. https://doi.org/10.1128/JVI.02968-14 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hansman, G. S. et al. Crystal constructions of GII.10 and GII.12 norovirus protruding domains in complicated with histo-blood group antigens reveal particulars for a possible web site of vulnerability. J. Virol. 85, 6687–6701. https://doi.org/10.1128/JVI.00246-11 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, J. M., Hutson, A. M., Estes, M. Okay. & Prasad, B. V. Atomic decision structural characterization of recognition of histo-blood group antigens by Norwalk virus. Proc. Natl. Acad. Sci. USA. 105, 9175–9180. https://doi.org/10.1073/pnas.0803275105 (2008).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, S. et al. Structural foundation for the popularity of blood group trisaccharides by norovirus. J. Virol. 81, 5949–5957. https://doi.org/10.1128/JVI.00219-07 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallagaray, A., Lockhauserbaumer, J., Hansman, G., Uetrecht, C. & Peters, T. Attachment of norovirus to histo blood group antigens: A cooperative multistep course of. Angew. Chem. 54, 12014–12019. https://doi.org/10.1002/anie.201505672 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Koromyslova, A. D., Leuthold, M. M., Bowler, M. W. & Hansman, G. S. The candy quartet: Binding of fucose to the norovirus capsid. Virology 483, 203–208. https://doi.org/10.1016/j.virol.2015.04.006 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Koromyslova, A., Tripathi, S., Morozov, V., Schroten, H. & Hansman, G. S. Human norovirus inhibition by a human milk oligosaccharide. Virology 508, 81–89. https://doi.org/10.1016/j.virol.2017.04.032 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Weichert, S. et al. Structural foundation for norovirus inhibition by human milk oligosaccharides. J. Virol. 90, 4843–4848. https://doi.org/10.1128/JVI.03223-15 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koromyslova, A. D., White, P. A. & Hansman, G. S. Remedy of norovirus particles with citrate. Virology 485, 199–204. https://doi.org/10.1016/j.virol.2015.07.009 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hansman, G. S. et al. Structural foundation for norovirus inhibition and fucose mimicry by citrate. J. Virol. 86, 284–292. https://doi.org/10.1128/JVI.05909-11 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koromyslova, A. D. et al. Nanobody-mediated neutralization reveals an achilles heel for norovirus. J. Virol. 94, e00660-20. https://doi.org/10.1128/jvi.00660-20 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindesmith, L. C. et al. Broad blockade antibody responses in human volunteers after immunization with a multivalent norovirus VLP candidate vaccine: Immunological analyses from a section I medical trial. PLoS Med. 12, e1001807. https://doi.org/10.1371/journal.pmed.1001807 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shanker, S. et al. Structural foundation for norovirus neutralization by an HBGA blocking human IgA antibody. Proc. Natl. Acad. Sci. USA. 113, E5830–E5837. https://doi.org/10.1073/pnas.1609990113 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atmar, R. L. et al. Norovirus vaccine in opposition to experimental human Norwalk Virus sickness. N. Engl. J. Med. 365, 2178–2187. https://doi.org/10.1056/NEJMoa1101245 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czako, R. et al. Serum hemagglutination inhibition exercise correlates with safety from gastroenteritis in individuals contaminated with Norwalk virus. Clin. Vaccine Immunol. 19, 284–287. https://doi.org/10.1128/CVI.05592-11 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Improvement of norwalk virus-specific monoclonal antibodies with therapeutic potential for the therapy of norwalk virus gastroenteritis. J. Virol. 87, 9547–9557. https://doi.org/10.1128/JVI.01376-13 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X.-F. et al. Tannic acid inhibited norovirus binding to HBGA receptors, a examine of fifty Chinese language medicinal herbs. Bioorg. Med. Chem. 20, 1616–1623 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Li, D. et al. Results of a wide range of meals extracts and juices on the precise binding capacity of norovirus GII.4 P particles. J. Meals Shield. 75, 1350–1354 (2012).

    Article 

    Google Scholar
     

  • Li, D. et al. Impact of grape seed extract on human norovirus GII.4 and murine norovirus 1 in viral suspensions, on stainless-steel discs, and in lettuce wash water. Appl. Environ. Microbiol. 78, 7572–7578 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kamimoto, M., Nakai, Y., Tsuji, T., Shimamoto, T. & Shimamoto, T. Antiviral results of persimmon extract on human norovirus and its surrogate, bacteriophage MS2. J. Meals Sci. 79, M941–M946 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Randazzo, W., Costantini, V., Morantz, E. Okay. & Vinjé, J. Human intestinal enteroids to guage human norovirus GII.4 inactivation by aged-green tea. Entrance. Microbiol. 11, 1917 (2020).

    Article 

    Google Scholar
     

  • Alvarado, G. et al. Broadly cross-reactive human antibodies that inhibit genogroup I and II noroviruses. Nat. Commun. 12, 4320. https://doi.org/10.1038/s41467-021-24649-w (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, R. et al. Analysis of excessive hydrostatic strain inactivation of human norovirus on strawberries, blueberries, raspberries and of their purees. Int. J. Meals Microbiol. 223, 17–24. https://doi.org/10.1016/j.ijfoodmicro.2016.02.002 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ibrahim, C., Hammami, S., Khelifi, N., Pothier, P. & Hassen, A. The effectiveness of activated sludge process and UV-C(254) in norovirus inactivation in a Tunisian industrial wastewater therapy plant. Meals Environ. Virol. 12, 250–259. https://doi.org/10.1007/s12560-020-09434-0 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Imamura, S. et al. Impact of excessive strain processing on all kinds of human noroviruses naturally current in aqua-cultured Japanese oysters. Foodborne Pathog. Dis. https://doi.org/10.1089/fpd.2018.2444 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, J. E. & Ko, G. Norovirus and MS2 inactivation kinetics of UV-A and UV-B with and with out TiO2. Water Res. 47, 5607–5613. https://doi.org/10.1016/j.watres.2013.06.035 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ortiz-Solà, J. et al. Analysis of a sanitizing washing step with totally different chemical disinfectants for the strawberry processing trade. Int. J. Meals Microbiol. 334, 108810. https://doi.org/10.1016/j.ijfoodmicro.2020.108810 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Park, D. et al. Inactivation effectivity and mechanism of UV-TiO2 photocatalysis in opposition to murine norovirus utilizing a solidified agar matrix. Int. J. Meals Microbiol. 238, 256–264. https://doi.org/10.1016/j.ijfoodmicro.2016.09.025 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Park, S. Y. et al. Utility of excessive hydrostatic strain for the inactivation of norovirus and high quality stability in recent sea squirt (Halocynthia roretzi). Meals Sci. Technol. Int. 25, 573–578. https://doi.org/10.1177/1082013219842439 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Rockey, N. et al. UV disinfection of human norovirus: Evaluating Infectivity utilizing a genome-wide PCR-based method. Environ. Sci. Technol. 54, 2851–2858. https://doi.org/10.1021/acs.est.9b05747 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wallace, R. L., Ouellette, M. & Jean, J. Impact of UV-C mild or hydrogen peroxide wipes on the inactivation of methicillin-resistant Staphylococcus aureus, Clostridium difficile spores and norovirus surrogate. J. Appl. Microbiol. 127, 586–597. https://doi.org/10.1111/jam.14308 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Horm, Okay. M. & D’Souza, D. H. Survival of human norovirus surrogates in milk, orange, and pomegranate juice, and juice blends at refrigeration (4 levels C). Meals Microbiol. 28, 1054–1061. https://doi.org/10.1016/j.fm.2011.02.012 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Su, X., Sangster, M. Y. & D’Souza, D. H. In vitro results of pomegranate juice and pomegranate polyphenols on foodborne viral surrogates. Foodborne Pathog. Dis. https://doi.org/10.1089/fpd.2010.0583 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Su, X., Howell, A. B. & D’Souza, D. H. Antiviral results of cranberry juice and cranberry proanthocyanidins on foodborne viral surrogates—A time dependence examine in vitro. Meals Microbiol. 27, 985–991. https://doi.org/10.1016/j.fm.2010.05.027 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Su, X., Howell, A. B. & D’Souza, D. H. The impact of cranberry juice and cranberry proanthocyanidins on the infectivity of human enteric viral surrogates. Meals Microbiol. 27, 535–540. https://doi.org/10.1016/j.fm.2010.01.001 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Whitehead, Okay. & McCue, Okay. A. Virucidal efficacy of disinfectant actives in opposition to feline calicivirus, a surrogate for norovirus, in a brief contact time. Am. J. Infect. Management 38, 26–30. https://doi.org/10.1016/j.ajic.2009.03.015 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hansman, G. S. et al. Detection of norovirus and sapovirus an infection amongst youngsters with gastroenteritis in Ho Chi Minh Metropolis, Vietnam. Arch. Virol. 149, 1673–1688 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Koromyslova, A. D., Morozov, V. A., Hefele, L. & Hansman, G. S. Human norovirus neutralized by a monoclonal antibody concentrating on the histo-blood group antigen pocket. J. Virol. 93, e02174-18. https://doi.org/10.1128/jvi.02174-18 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    How Is Half Of Pc

    How Is Msw Course

    How Is It

    How Is Course Hero

    Recent Comments