Sonntag, Juli 31, 2022
StartMicrobiologyRange, distribution and ecology of fungal communities current in Antarctic lake sediments...

Range, distribution and ecology of fungal communities current in Antarctic lake sediments uncovered by DNA metabarcoding


  • Gonçalves, V. N. et al. Range and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol. Ecol. 82, 459–471 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Convey, P. Antarctic ecosystems. In Encyclopedia of Biodiversity (ed. Levin, S. A.) 179–187 (Elsevier, Amsterdam, 2017).

  • Vincent, W. F. Evolutionary origins of Antarctic microbiota: invasion, choice and endemism. Antarct. Sci. 12, 374–385 (2000).

    ADS 
    Article 

    Google Scholar
     

  • Izaguirre, I., Mataloni, G., Vinocur, A. & Inform, G. Temporal and spatial variations of phytoplankton from Boeckella lake (Hope Bay, Antarctic Peninsula). Antarct. Sci. 5, 137–141 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Ellis-Evans, J. C. Microbial range and performance in Antarctic freshwater ecosystems. Biodivers. Conserv. 5, 1395–1431 (1996).

    Article 

    Google Scholar
     

  • Ogaki, M. B. et al. Range and ecology of fungal assemblages current in lakes of Antarctica. In Fungi of Antarctica: Range, Ecology and Biotechnological Functions (ed. Rosa, L. H.) 69–97 (Springer, Berlin, 2019).

  • Chaparro, M. et al. Sedimentary evaluation and magnetic properties of Lake Anónima, Vega Island. Antarct. Sci. 29, 429–444 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Ogaki, M. B. et al. Range, ecology, and bioprospecting of culturable fungi in lakes impacted by anthropogenic actions in Maritime Antarctica. Extremophiles 24, 637–655 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brunati, M. et al. Range and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar. Gen. 2, 43–50 (2009).

    Article 

    Google Scholar
     

  • Quesada, A., Camacho, A., Rochera, C. & Velázquez, D. Byers Peninsula: A reference website for coastal, terrestrial land limnetic ecosystem research in maritime Antarctica. Polar Sci. 3, 181–187 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Vaz, A. B. M. et al. The variety, extracellular enzymatic actions and photoprotective compounds of yeasts remoted in Antarctica. Braz. J. Microbiol. 42, 937–947 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ogaki, M. B. et al. Range and bioprospecting of cultivable fungal assemblages in sediments of lakes within the Antarctic Peninsula. Fungal Biol. 124, 601–611 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Souza, L. D. et al. Evaluation of fungal range current in lakes of Maritime Antarctica utilizing DNA metabarcoding: a temporal microcosm experiment. Extremophiles 25, 77–84 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ogaki, M. B. et al. Range of fungal DNA in lake sediments on Vega Island, north-east Antarctic Peninsula assessed utilizing DNA metabarcoding. Extremophiles 25, 257–265 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rosa, L. H. et al. Fungal range in a sediment core from local weather change impacted Boeckella Lake, Hope Bay, north-eastern Antarctic Peninsula assessed utilizing metabarcoding. Extremophiles 26, 1–10 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Embrapa, S. Guide de métodos de análise de solo third edn. (Centro Nacional de Pesquisa de Solos, 2017).


    Google Scholar
     

  • Chen, S. et al. Validation of the ITS2 area as a novel DNA barcode for figuring out medicinal plant species. PLoS ONE 5, e8613 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Richardson, R. T. et al. Utility of ITS2 metabarcoding to find out the provenance of pollen collected by honey bees in an agroecosystem. Appl. Plant Sci. 3, 1400066 (2015).

    Article 

    Google Scholar
     

  • White, T. J. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Information to Strategies and Functions (ed Innis, M. A., Gelfand, D.H., Sninsky, J.J., White, T.J.) 315–322 (1990).

  • Bushnell, B. “BBMap: a quick, correct, splice-aware aligner”. Lawrence Berkeley Nationwide Lab. (LBNL), Berkeley, CA (United States). https://sourceforge.internet/initiatives/bbmap (2014).

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome information science utilizing QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: high-resolution pattern inference from Illumina amplicon information. Nat. Strategies. 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 6, 90 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abarenkov, Okay. et al. UNITE QIIME launch for eukaryotes. Model 04.02.2020. UNITE Neighborhood. doi:https://doi.org/10.15156/BIO/786386 (2020).

  • Camacho, C. et al. BLAST+: structure and purposes. BMC Bioinform. 10, 1–9 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Huson, D. H. et al. MEGAN group edition-interactive exploration and evaluation of large-scale microbiome sequencing information. PLoS Comput. Biol. 12, e1004957 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in an online browser. BMC Bioinform. 12, 385 (2011).

    Article 

    Google Scholar
     

  • Babicki, S. et al. Heatmapper: web-enabled warmth mapping for all. Nucl. Acids Res. 44, 147–153 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Medinger, R. et al. Range in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular range of eukaryotic microorganisms. Mol. Ecol. 19, 32–40 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weber, A. A. & Pawlowski, J. Can abundance of protists be inferred from sequence information: a case examine of Foraminifera. PLoS ONE 8, e56739 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Giner, C. R. et al. Environmental sequencing supplies cheap estimates of the relative abundance of particular picoeukaryotes. Appl. Environ. Microbiol. 82, 4757–4766 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deiner, Okay. et al. Environmental DNA metabarcoding: remodeling how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Hering, D. et al. Implementation choices for DNA-based identification into ecological standing evaluation beneath the European Water Framework Directive. Water Res. 138, 192–205 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kirk, P. M., Cannon, P. F., Minter, D. W. & Stalpers, J. A. Dictionary of the Fungi, tenth ed., CAB Worldwide, Wallingford, UK, p. 784 (2008).

  • Tedersoo, L. et al. Excessive-level classification of the Fungi and a software for evolutionary ecological analyses. Fungal Div. 90, 135–159 (2018).

    Article 

    Google Scholar
     

  • Rosa, L. H. et al. DNA metabarcoding to evaluate the variety of airborne fungi current in air over Keller Peninsula, King George Island, Antarctica. Microb. Ecol. 82, 165–172 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software program bundle for schooling and information evaluation. Palaeontol. Electron. 4, 9 (2001).


    Google Scholar
     

  • Nguyen, N. H. et al. FUNGuild: an open annotation software for parsing fungal group datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article 

    Google Scholar
     

  • Ellis-Evans, J. C. Fungi from maritime Antarctic freshwater environments. Br. Antartic Surv. B. 68, 37–45 (1985).


    Google Scholar
     

  • da Silva, T. H. et al. Range, distribution, and ecology of viable fungi in permafrost and lively layer of Maritime Antarctica. Extremophiles 24, 565–576 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Benjamin, C. R. Ascocarps of Aspergillus and Penicillium. Mycologia 47, 669–687 (1955).

    Article 

    Google Scholar
     

  • Yilmaz, N., Visagie, C. M., Houbraken, J., Frisvad, J. C. & Samson, R. A. Polyphasic taxonomy of the genus. Talaromyces. Stud. Mycol. 78, 175–341 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rosa, L. H. et al. Fungi in Antarctica: range, ecology, results of local weather change, and bioprospection for bioactive compounds. In Fungi of Antarctica: Range, Ecology and Biotechnological Functions (ed. Rosa, L. H.) 1–18 (Springer, Berlin, 2019).

  • Miller, J. H., Giddens, J. E. & Foster, A. A. A survey of the fungi of forest and cultivated soils of Georgia. Mycologia 49, 779–808 (1957).

    Article 

    Google Scholar
     

  • Lombard, L., Van Der Merwe, N., Groenewald, J. & Crous, P. Lineages in Nectriaceae: Re-evaluating the generic standing of Ilyonectria and allied genera. Phytopathol. Mediterr. 53, 515–532 (2014).

    CAS 

    Google Scholar
     

  • Cabral, A., Groenewald, J. Z., Rego, C., Oliveira, H. & Crous, P. W. Cylindrocarpon root rot: multi-gene evaluation reveals novel species throughout the Ilyonectria radicicola species advanced. Mycol. Prog. 11, 655–688 (2012).

    Article 

    Google Scholar
     

  • Parkinson, L., Shivas, R. G. & Dann, E. Okay. Pathogenicity of Nectriaceus fungi on avocado in Australia. Phytopathology 107, 1479–1485 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Brady, N. C. & Weil, R. R. The character and properties of soils (Pearson Prentice Corridor, Higher Saddle River, 2008).


    Google Scholar
     

  • Rodrigues, W. F., de Oliveira Soares, F., Schaefer, C. E. G., Leite, M. G. P. & Pavinato, P. S. Phosphatization beneath birds’ exercise: ornithogenesis at totally different scales on Antarctic soilscapes. Geoderma 391, 114950 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Rosa, L. H. et al. DNA metabarcoding of fungal range in air and snow of Livingston Island, South Shetland Islands, Antarctica. Sci. Rep. 10, 1–11 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Rosa, L. H. et al. DNA metabarcoding uncovers fungal range in soils of protected and non-protected areas on Deception Island, Antarctica. Sci. Rep. 10, 1–9 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • de Menezes, G. C. A. et al. Fungal range current on rocks from a polar desert in continental Antarctica assessed utilizing DNA metabarcoding. Extremophiles 25, 193–202 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Schütte, U. M. et al. Impact of permafrost thaw on plant and soil fungal group in a boreal forest: Does fungal group change mediate plant productiveness response?. J. Ecol. 107, 1737–1752 (2019).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments