Montag, Mai 23, 2022
StartMicrobiologyStructural biology of CRISPR–Cas immunity and genome enhancing enzymes

Structural biology of CRISPR–Cas immunity and genome enhancing enzymes


  • Barrangou, R. et al. CRISPR offers acquired resistance in opposition to viruses in prokaryotes. Science 315, 1709–1712 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Knott, G. J. & Doudna, J. A. CRISPR-Cas guides the way forward for genetic engineering. Science 361, 866–869 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Koonin, E. V. & Makarova, Ok. S. Origins and evolution of CRISPR-Cas methods. Phil. Trans. R. Soc. B 374, 20180087 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hille, F. et al. The biology of CRISPR-Cas: from side to side. Cell 172, 1239–1259 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shmakov, S. et al. Discovery and practical characterization of numerous class 2 CRISPR-Cas methods. Mol. Cell 60, 385–397 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grissa, I., Vergnaud, G. & Pourcel, C. The CRISPRdb database and instruments to show CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8, 172 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • McGinn, J. & Marraffini, L. A. Molecular mechanisms of CRISPR–Cas spacer acquisition. Nat. Rev. Microbiol. 17, 7–12 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gleditzsch, D. et al. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and constructions. RNA Biol. 16, 504–517 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Behler, J. & Hess, W. R. Approaches to review CRISPR RNA biogenesis and the important thing gamers concerned. Strategies 172, 12–26 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marino, N. D., Pinilla-Redondo, R., Csörgő, B. & Bondy-Denomy, J. Anti-CRISPR protein purposes: pure brakes for CRISPR-Cas applied sciences. Nat. Strategies 17, 471–479 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Makarova, Ok. S. et al. Evolutionary classification of CRISPR–Cas methods: a burst of sophistication 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jia, N. & Patel, D. J. Construction-based practical mechanisms and biotechnology purposes of anti-CRISPR proteins. Nat. Rev. Mol. Cell Biol. 22, 563–579 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, T. Y. & Doudna, J. A. Chemistry of sophistication 1 CRISPR-Cas effectors: binding, enhancing, and regulation. J. Biol. Chem. 295, 14473–14487 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Molina, R., Sofos, N. & Montoya, G. Structural foundation of CRISPR-Cas kind III prokaryotic defence methods. Curr. Opin. Struct. Biol. 65, 119–129 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taylor, H. N. et al. Positioning numerous kind IV constructions and capabilities inside class 1 CRISPR-Cas methods. Entrance. Microbiol. 12, 674522 (2021).


    Google Scholar
     

  • O’Connell, M. R. Molecular mechanisms of RNA concentrating on by Cas13-containing kind VI CRISPR–Cas methods. J. Mol. Biol. 431, 66–87 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Krupovic, M., Makarova, Ok. S., Forterre, P., Prangishvili, D. & Koonin, E. V. Casposons: a brand new superfamily of self-synthesizing DNA transposons on the origin of prokaryotic CRISPR-Cas immunity. BMC Biol. 12, 36 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hickman, A. B., Kailasan, S., Genzor, P., Haase, A. D. & Dyda, F. Casposase construction and the mechanistic hyperlink between DNA transposition and spacer acquisition by CRISPR-Cas. eLife 9, e50004 (2020). This work describes the construction of the casposase and its website specificity, offering perception into the evolutionary origins of the Cas1 protein.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, J. et al. Structural and mechanistic foundation of PAM-dependent spacer acquisition in CRISPR-Cas methods. Cell 163, 840–853 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nuñez, J. Ok., Harrington, L. B., Kranzusch, P. J., Engelman, A. N. & Doudna, J. A. International DNA seize throughout CRISPR–Cas adaptive immunity. Nature 527, 535–538 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Xiao, Y., Ng, S., Nam, Ok. H. & Ke, A. How kind II CRISPR–Cas set up immunity by means of Cas1–Cas2-mediated spacer integration. Nature 550, 137–141 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wright, A. V. et al. Constructions of the CRISPR genome integration advanced. Science 357, 1113–1118 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hickman, A. B. & Dyda, F. DNA transposition at work. Chem. Rev. 116, 12758–12784 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Béguin, P., Charpin, N., Koonin, E. V., Forterre, P. & Krupovic, M. Casposon integration reveals robust goal website desire and recapitulates protospacer integration by CRISPR-Cas methods. Nucleic Acids Res. 44, 10367–10376 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yosef, I., Goren, M. G. & Qimron, U. Proteins and DNA parts important for the CRISPR adaptation course of in Escherichia coli. Nucleic Acids Res. 40, 5569–5576 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Datsenko, Ok. A. et al. Molecular reminiscence of prior infections prompts the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3, 945 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Arslan, Z., Hermanns, V., Wurm, R., Wagner, R. & Pul, Ü. Detection and characterization of spacer integration intermediates in kind IE CRISPR–Cas system. Nucleic Acids Res. 42, 7884–7893 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nuñez, J. Ok., Lee, A. S. Y., Engelman, A. & Doudna, J. A. Integrase-mediated spacer acquisition throughout CRISPR–Cas adaptive immunity. Nature 519, 193–198 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rollie, C., Schneider, S., Brinkmann, A. S., Bolt, E. L. & White, M. F. Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition. eLife 4, e08716 (2015).

    PubMed Central 
    Article 

    Google Scholar
     

  • Wright, A. V. & Doudna, J. A. Defending genome integrity throughout CRISPR immune adaptation. Nat. Struct. Mol. Biol. 23, 876–883 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nuñez, J. Ok. et al. Cas1–Cas2 advanced formation mediates spacer acquisition throughout CRISPR–Cas adaptive immunity. Nat. Struct. Mol. Biol. 21, 528–534 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sasnauskas, G. & Siksnys, V. CRISPR adaptation from a structural perspective. Curr. Opin. Struct. Biol. 65, 17–25 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wilkinson, M. et al. Construction of the DNA-bound spacer Seize advanced of a kind II CRISPR-Cas system. Mol. Cell 75, 90–101.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hu, C. et al. Mechanism for Cas4-assisted directional spacer acquisition in CRISPR–Cas. Nature 598, 515–520 (2021). This work offers the mechanism and structural foundation for Cas4-assisted PAM processing and describes a mannequin wherein PAM sequestration and delayed processing influences the orientation of spacer integration.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Burstein, D. et al. New CRISPR–Cas methods from uncultivated microbes. Nature 542, 237–241 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Makarova, Ok. S., Wolf, Y. I. & Koonin, E. V. Classification and nomenclature of CRISPR-Cas methods: the place from right here? CRISPR J. 1, 325–336 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wright, A. V. et al. A practical mini-integrase in a two-protein kind V-C CRISPR system. Mol. Cell 73, 727–737 (2019). This work describes a tetrameric CRISPR integrase which will symbolize the ancestral CRISPR integrase.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Santiago-Frangos, A., Buyukyoruk, M., Wiegand, T., Krishna, P. & Wiedenheft, B. Distribution and phasing of sequence motifs that facilitate CRISPR adaptation. Curr. Biol. 31, 3515–3524 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Koonin, E. V. & Makarova, Ok. S. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol. 10, 679–686 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bertelsen, M. B. et al. Structural foundation for toxin inhibition within the VapXD toxin-antitoxin system. Construction 29, 139–150 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kwon, A.-R. et al. Structural and biochemical characterization of HP0315 from Helicobacter pylori as a VapD protein with an endoribonuclease exercise. Nucleic Acids Res. 40, 4216–4228 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ka, D., Kim, D., Baek, G. & Bae, E. Structural and practical characterization of Streptococcus pyogenes Cas2 protein below totally different pH situations. Biochem. Biophys. Res. Commun. 451, 152–157 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Silas, S. et al. Direct CRISPR spacer acquisition from RNA by a pure reverse transcriptase-Cas1 fusion protein. Science 351, aad4234 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Koonin, E. V. & Makarova, Ok. S. Cell genetic parts and evolution of CRISPR-Cas methods: all the way in which there and again. Genome Biol. Evol. 9, 2812–2825 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Silas, S. et al. On the origin of reverse transcriptase-using CRISPR-Cas methods and their hyperdiverse, enigmatic spacer repertoires. mBio 8, e00897-17 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mohr, G. et al. A reverse transcriptase-Cas1 fusion protein accommodates a Cas6 area required for each CRISPR RNA biogenesis and RNA spacer acquisition. Mol. Cell 72, 700–714 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, J. Y. et al. Structural coordination between lively websites of a CRISPR reverse transcriptase-integrase advanced. Nat. Commun. 12, 2571 (2021). This work describes the construction of a Cas6–RT–Cas1–Cas2 advanced, highlighting interactions between the three domains and the potential practical implications for CRISPR adaptation.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stamos, J. L., Lentzsch, A. M. & Lambowitz, A. M. Construction of a thermostable group II intron reverse transcriptase with template-primer and its practical and evolutionary implications. Mol. Cell 68, 926–939 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nussenzweig, P. M. & Marraffini, L. A. Molecular mechanisms of CRISPR-Cas immunity in micro organism. Annu. Rev. Genet. 54, 93–120 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Levy, A. et al. CRISPR adaptation biases clarify desire for acquisition of international DNA. Nature 520, 505–510 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wigley, D. B. Bacterial DNA restore: current insights into the mechanism of RecBCD, AddAB and AdnAB. Nat. Rev. Microbiol. 11, 9–13 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim, S. et al. Selective loading and processing of prespacers for exact CRISPR adaptation. Nature 579, 141–145 (2020). This work describes how the kinetic coordination of prespacer processing and PAM trimming impacts the orientation of spacer integration and presents a mannequin for prespacer choice and processing.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ramachandran, A., Summerville, L., Study, B. A., DeBell, L. & Bailey, S. Processing and integration of functionally oriented prespacers within the Escherichia coli CRISPR system relies on bacterial host exonucleases. J. Biol. Chem. 295, 3403–3414 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kieper, S. N. et al. Cas4 facilitates PAM-compatible spacer choice throughout CRISPR adaptation. Cell Rep. 22, 3377–3384 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee, H., Dhingra, Y. & Sashital, D. G. The Cas4-Cas1-Cas2 advanced mediates exact prespacer processing throughout CRISPR adaptation. eLife 8, e44248 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Musharova, O. et al. Prespacers fashioned throughout primed adaptation affiliate with the Cas1–Cas2 adaptation advanced and the Cas3 interference nuclease–helicase. Proc. Natl Acad. Sci. USA 118, e2021291118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu, C. et al. Mechanisms of spacer acquisition by sequential meeting of the difference module in Synechocystis. Nucleic Acids Res. 49, 2973–2984 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Drabavicius, G. et al. DnaQ exonuclease-like area of Cas2 promotes spacer integration in a kind I-E CRISPR-Cas system. EMBO Rep. 19, e45543 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lee, H., Zhou, Y., Taylor, D. W. & Sashital, D. G. Cas4-dependent prespacer processing ensures high-fidelity programming of CRISPR arrays. Mol. Cell 70, 48–59.e5 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Heler, R. et al. Cas9 specifies practical viral targets throughout CRISPR–Cas adaptation. Nature 519, 199–202 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Heler, R. et al. Mutations in Cas9 improve the speed of acquisition of viral spacer sequences through the CRISPR-Cas immune response. Mol. Cell 65, 168–175 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jakhanwal, S. et al. A CRISPR-Cas9–integrase advanced generates exact DNA fragments for genome integration. Nucleic Acids Res. 49, 3546–3556 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swarts, D. C., Mosterd, C., van Passel, M. W. J. & Brouns, S. J. J. CRISPR interference directs strand particular spacer acquisition. PLoS ONE 7, e35888 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dillard, Ok. E. et al. Meeting and translocation of a CRISPR-Cas primed acquisition advanced. Cell 175, 934–946.e15 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xue, C., Whitis, N. R. & Sashital, D. G. Conformational management of Cascade interference and priming actions in CRISPR immunity. Mol. Cell 64, 826–834 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nicholson, T. J. et al. Bioinformatic proof of widespread priming in kind I and II CRISPR-Cas methods. RNA Biol. 16, 566–576 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Nussenzweig, P. M., McGinn, J. & Marraffini, L. A. Cas9 cleavage of viral genomes primes the acquisition of latest immunological reminiscences. Cell Host Microbe 26, 515–526.e6 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. Molecular recordings by directed CRISPR spacer acquisition. Science 353, aaf1175 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sheth, R. U., Yim, S. S., Wu, F. L. & Wang, H. H. Multiplex recording of mobile occasions over time on CRISPR organic tape. Science 358, 1457–1461 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schmidt, F., Cherepkova, M. Y. & Platt, R. J. Transcriptional recording by CRISPR spacer acquisition from RNA. Nature 562, 380–385 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Munck, C., Sheth, R. U., Freedberg, D. E. & Wang, H. H. Recording cellular DNA within the intestine microbiota utilizing an Escherichia coli CRISPR-Cas spacer acquisition platform. Nat. Commun. 11, 95 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gasiunas, G. & Barrangou, R. Cas9–crRNA ribonucleoprotein advanced mediates particular DNA cleavage for adaptive immunity in micro organism. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cong, L. et al. Multiplex genome engineering utilizing CRISPR/Cas methods. Science 339, 819–823 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mali, P. et al. RNA-guided human genome engineering by way of Cas9. Science 339, 823–826 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hwang, W. Y. et al. Environment friendly genome enhancing in zebrafish utilizing a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cho, S. W., Kim, S., Kim, J. M. & Kim, J.-S. Focused genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jinek, M. et al. RNA-programmed genome enhancing in human cells. eLife 2, e00471 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a category 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zetsche, B. et al. Multiplex gene enhancing by CRISPR–Cpf1 utilizing a single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, J.-J. et al. CasX enzymes comprise a definite household of RNA-guided genome editors. Nature 566, 218–223 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Strecker, J. et al. Engineering of CRISPR-Cas12b for human genome enhancing. Nat. Commun. 10, 212 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pausch, P. et al. CRISPR-CasΦ from big phages is a hypercompact genome editor. Science 369, 333–337 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome enhancing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Swarts, D. C. & Jinek, M. Cas9 versus Cas12a/Cpf1: structure-function comparisons and implications for genome enhancing. Wiley Interdiscip. Rev. RNA 9, e1481 (2018).

    PubMed 

    Google Scholar
     

  • Stella, S., Alcón, P. & Montoya, G. Class 2 CRISPR–Cas RNA-guided endonucleases: Swiss Military knives of genome enhancing. Nat. Struct. Mol. Biol. 24, 882–892 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Altae-Tran, H. et al. The widespread IS200/IS605 transposon household encodes numerous programmable RNA-guided endonucleases. Science 374, 57–65 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jinek, M. et al. Constructions of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Nishimasu, H. et al. Crystal construction of Cas9 in advanced with information RNA and goal DNA. Cell 156, 935–949 (2014). This research reveals for the primary time how Cas9 acknowledges DNA.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang, F., Zhou, Ok., Ma, L., Gressel, S. & Doudna, J. A. A Cas9–information RNA advanced preorganized for goal DNA recognition. Science 348, 1477–1481 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural foundation of PAM-dependent goal DNA recognition by the Cas9 endonuclease. Nature 513, 569–573 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang, F. et al. Constructions of a CRISPR-Cas9 R-loop advanced primed for DNA cleavage. Science 351, 867–871 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sternberg, S. H., LaFrance, B., Kaplan, M. & Doudna, J. A. Conformational management of DNA goal cleavage by CRISPR-Cas9. Nature 527, 110–113 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, Y. et al. Catalytic-state construction and engineering of Streptococcus thermophilus Cas9. Nat. Catal. 3, 813–823 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Solar, W. et al. Constructions of Neisseria meningitidis Cas9 complexes in catalytically poised and anti-CRISPR-inhibited states. Mol. Cell 76, 938–952.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pacesa, M. & Jinek, M. Mechanism of R-loop formation and conformational activation of Cas9. Preprint at bioRxiv https://doi.org/10.1101/2021.09.16.460614 (2021).

    Article 

    Google Scholar
     

  • Bravo, J. P. Ok. et al. Structural foundation for mismatch surveillance by CRISPR-Cas9. Nature 603, 343–347 (2022). This research demonstrates how extreme goal mismatches inhibit DNA chopping by Cas9 and divulges a most complete construction of Cas9 certain to the DNA cleavage product.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhu, X. et al. Cryo-EM constructions reveal coordinated area motions that govern DNA cleavage by Cas9. Nat. Struct. Mol. Biol. 26, 679–685 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, J. S. et al. Enhanced proofreading governs CRISPR–Cas9 concentrating on accuracy. Nature 550, 407–410 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Palermo, G. et al. Protospacer adjoining motif-induced allostery prompts CRISPR-Cas9. J. Am. Chem. Soc. 139, 16028–16031 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Palermo, G. et al. Key function of the REC lobe throughout CRISPR-Cas9 activation by ‘sensing’, ‘regulating’, and ‘locking’ the catalytic HNH area. Q. Rev. Biophys. 51, e91 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nierzwicki, L. et al. Enhanced specificity mutations perturb allosteric signaling in CRISPR-Cas9. eLife 10, e73601 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zuo, Z. et al. Structural and practical insights into the bona fide catalytic state of Streptococcus pyogenes Cas9 HNH nuclease area. eLife 8, e46500 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Belato, H. B. et al. Structural and dynamic insights into the HNH nuclease of divergent Cas9 species. J. Struct. Biol. 214, 107814 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Globyte, V., Lee, S. H., Bae, T., Kim, J. & Joo, C. CRISPR /Cas9 searches for a protospacer adjoining motif by lateral diffusion. EMBO J. 38, e99466 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cofsky, J. C., Soczek, Ok. M., Knott, G. J., Nogales, E. & Doudna, J. A. CRISPR-Cas9 bends and twists DNA to learn its sequence. Nat. Struct. Mol. Biol. 29, 395–402 (2022). This text for the primary time reveals structural insights into how Cas9 opens dsDNA to interrogate goal sequences.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ivanov, I. E. et al. Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling. Proc. Natl Acad. Sci. USA 117, 5853–5860 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu, M.-S. et al. Engineered CRISPR/Cas9 enzymes enhance discrimination by slowing DNA cleavage to permit launch of off-target DNA. Nat. Commun. 11, 3576 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kleinstiver, B. P. et al. Excessive-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target results. Nature 529, 490–495 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yamano, T. et al. Crystal construction of Cpf1 in advanced with information RNA and goal DNA. Cell 165, 949–962 (2016). This research reveals for the primary time how Cas12a acknowledges DNA.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dong, D. et al. The crystal construction of Cpf1 in advanced with CRISPR RNA. Nature 532, 522–526 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pausch, P. et al. DNA interference states of the hypercompact CRISPR-CasΦ effector. Nat. Struct. Mol. Biol. 28, 652–661 (2021). This text describes how a minimal Cas12 enzyme binds dsDNA and catalyses DNA cleavage.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carabias, A. et al. Construction of the mini-RNA-guided endonuclease CRISPR-Cas12j3. Nat. Commun. 12, 4476 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang, H., Gao, P., Rajashankar, Ok. R. & Patel, D. J. PAM-dependent goal DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell 167, 1814–1828 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tsuchida, C. A. et al. Chimeric CRISPR-CasX enzymes and information RNAs for improved genome enhancing exercise. Mol. Cell 82, 1199–1209.e6 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Harrington, L. B. et al. A scoutRNA is required for some kind V CRISPR-Cas methods. Mol. Cell 79, 416–424.e5 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang, C. J., Adler, B. A. & Doudna, J. A. A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. Preprint at bioRxiv https://doi.org/10.1101/2021.12.06.471469 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurihara, N. et al. Construction of the kind V-C CRISPR-Cas effector enzyme. Mol. Cell 82, 1–13 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362, 839–842 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Takeda, S. N. et al. Construction of the miniature kind V-F CRISPR-Cas effector enzyme. Mol. Cell 81, 558–570 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiao, R., Li, Z., Wang, S., Han, R. & Chang, L. Structural foundation for substrate recognition and cleavage by the dimerization-dependent CRISPR–Cas12f nuclease. Nucleic Acids Res. 49, 4120–4128 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, Z., Zhang, H., Xiao, R., Han, R. & Chang, L. Cryo-EM construction of the RNA-guided ribonuclease Cas12g. Nat. Chem. Biol. 17, 387–393 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Swarts, D. C., van der Oost, J. & Jinek, M. Structural foundation for information RNA processing and seed-dependent DNA concentrating on by CRISPR-Cas12a. Mol. Cell 66, 221–233 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao, P., Yang, H., Rajashankar, Ok. R., Huang, Z. & Patel, D. J. Sort V CRISPR-Cas Cpf1 endonuclease employs a singular mechanism for crRNA-mediated goal DNA recognition. Cell Res. 26, 901–913 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stella, S., Alcón, P. & Montoya, G. Construction of the Cpf1 endonuclease R-loop advanced after goal DNA cleavage. Nature 546, 559–563 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cofsky, J. C. et al. CRISPR-Cas12a exploits R-loop asymmetry to kind double-strand breaks. eLife 9, e55143 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stella, S. et al. Conformational activation promotes CRISPR-Cas12a catalysis and resetting of the endonuclease exercise. Cell 175, 1856–1871 (2018). This research offers intensive structural and mechanistic insights into the conformational activation of Cas12a.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang, X. et al. Structural foundation for 2 metal-ion catalysis of DNA cleavage by Cas12i2. Nat. Commun. 11, 5241 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, J. S. et al. CRISPR-Cas12a goal binding unleashes indiscriminate single-stranded DNase exercise. Science 360, 436–439 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Swarts, D. C. & Jinek, M. Mechanistic insights into the cis- and trans-acting DNase actions of Cas12a. Mol. Cell 73, 589–600 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang, W. et al. CRISPR-Cas12a nucleases bind versatile DNA duplexes with out RNA/DNA complementarity. ACS Omega 4, 17140–17147 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Paul, B., Chaubet, L., Verver, D. E. & Montoya, G. Mechanics of CRISPR-Cas12a and engineered variants on λ-DNA. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab1272 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Losito, M., Smith, Q. M., Newton, M. D., Cuomo, M. E. & Rueda, D. S. Cas12a goal search and cleavage on force-stretched DNA. Phys. Chem. Chem. Phys. 23, 26640–26644 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kapitonov, V. V., Makarova, Ok. S. & Koonin, E. V. ISC, a novel group of bacterial and archaeal DNA transposons that encode Cas9 homologs. J. Bacteriol. 198, 797–807 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Shmakov, S. et al. Range and evolution of sophistication 2 CRISPR-Cas methods. Nat. Rev. Microbiol. 15, 169–182 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Karvelis, T. et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692–696 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weinberg, Z., Perreault, J., Meyer, M. M. & Breaker, R. R. Distinctive structured noncoding RNAs revealed by bacterial metagenome evaluation. Nature 462, 656–659 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stoddard, B. L. Homing endonucleases from cellular group I introns: discovery to genome engineering. Mob. DNA 5, 7 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Stoddard, B. L. Homing endonucleases: from microbial genetic invaders to reagents for focused DNA modification. Construction 19, 7–15 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR–Cas methods direct RNA-guided DNA integration. Nature 571, 219–225 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Faure, G. et al. CRISPR–Cas in cellular genetic parts: counter-defence and past. Nat. Rev. Microbiol. 17, 513–525 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peters, J. E., Makarova, Ok. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR-Cas methods by Tn7-like transposons. Proc. Natl Acad. Sci. USA 114, E7358–E7366 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rybarski, J. R., Hu, Ok., Hill, A. M., Wilke, C. O. & Finkelstein, I. J. Metagenomic discovery of CRISPR-associated transposons. Proc. Natl Acad. Sci. USA 118, e2112279118 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Halpin-Healy, T. S., Klompe, S. E., Sternberg, S. H. & Fernández, I. S. Structural foundation of DNA concentrating on by a transposon-encoded CRISPR-Cas system. Nature 577, 271–274 (2020). This work offers mechanistic insights into subtype I-F3 CRISPR transposases by describing the constructions of a TniQ–Cascade advanced and divulges interactions between TniQ and Cas6 and Cas7.1 throughout the Cascade advanced.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, Z., Zhang, H., Xiao, R. & Chang, L. Cryo-EM construction of a kind I-F CRISPR RNA guided surveillance advanced certain to transposition protein TniQ. Cell Res. 30, 179–181 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jia, N., Xie, W., de la Cruz, M. J., Eng, E. T. & Patel, D. J. Construction-function insights into the preliminary step of DNA integration by a CRISPR-Cas-Transposon advanced. Cell Res. 30, 182–184 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, B., Xu, W. & Yang, H. Structural foundation of a Tn7-like transposase recruitment and DNA loading to CRISPR-Cas surveillance advanced. Cell Res. 30, 185–187 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park, J.-U. et al. Structural foundation for goal website choice in RNA-guided DNA transposition methods. Science 373, 768–774 (2021). This work offers mechanistic insights into subtype V-Ok CRISPR transposases by describing a transposition regulator, TnsC, from a subtype V-Ok CAST system and its interplay with TniQ and proposing a mannequin for subtype V-Ok CAST transposition.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Querques, I., Schmitz, M., Oberli, S., Chanez, C. & Jinek, M. Goal website choice and remodelling by kind V CRISPR-transposon methods. Nature 599, 497–502 (2021). This work offers mechanistic insights into subtype V-Ok CRISPR transposases by describing goal recognition by Cas12k and the function of the transposition regulator TnsC and proposing another mannequin for subtype V-Ok CAST transposition.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiao, R. et al. Structural foundation of goal DNA recognition by CRISPR-Cas12k for RNA-guided DNA transposition. Mol. Cell 81, 4457–4466.e5 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chowdhury, S. et al. Construction reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance advanced. Cell 169, 47–57.e11 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo, T. W. et al. Cryo-EM constructions reveal mechanism and inhibition of DNA concentrating on by a CRISPR-Cas surveillance advanced. Cell 171, 414–426.e12 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pausch, P. et al. Structural variation of kind I-F CRISPR RNA guided DNA surveillance. Mol. Cell 67, 622–632.e4 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rollins, M. F. et al. Construction reveals a mechanism of CRISPR-RNA-guided nuclease recruitment and anti-CRISPR viral mimicry. Mol. Cell 74, 132–142.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hayes, R. P. et al. Structural foundation for promiscuous PAM recognition in kind I–E Cascade from E. coli. Nature 530, 499–503 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Greene, E. C. & Mizuuchi, Ok. Dynamics of a protein polymer: the meeting and disassembly pathways of the MuB transposition goal advanced. EMBO J. 21, 1477–1486 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vo, P. L. H. et al. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. 39, 480–489 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rubin, B. E. et al. Species- and site-specific genome enhancing in advanced bacterial communities. Nat. Microbiol. 7, 34–47 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Stellwagen, A. E. & Craig, N. L. Avoiding self: two Tn7-encoded proteins mediate goal immunity in Tn7 transposition. EMBO J. 16, 6823–6834 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Saito, M. et al. Twin modes of CRISPR-associated transposon homing. Cell 184, 2441–2453 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Petassi, M. T., Hsieh, S.-C. & Peters, J. E. Information RNA categorization allows goal website selection in Tn7-CRISPR-Cas transposons. Cell 183, 1757–1771.e18 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Waddell, C. S. & Craig, N. L. Tn7 transposition: two transposition pathways directed by 5 Tn7-encoded genes. Genes Dev. 2, 137–149 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klompe, S. E. et al. Evolutionary and mechanistic range of kind I-F CRISPR-associated transposons. Mol. Cell 82, 616–628 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, G., Lin, Q., Jin, S. & Gao, C. The CRISPR-Cas toolbox and gene enhancing applied sciences. Mol. Cell 82, 333–347 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nambiar, T. S., Baudrier, L., Billon, P. & Ciccia, A. CRISPR-based genome enhancing by means of the lens of DNA restore. Mol. Cell 82, 348–388 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lapinaite, A. et al. DNA seize by a CRISPR-Cas9 guided adenine base editor. Science 369, 566–571 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hirano, S., Nishimasu, H., Ishitani, R. & Nureki, O. Structural foundation for the altered PAM specificities of engineered CRISPR-Cas9. Mol. Cell 61, 886–894 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen, W. et al. Molecular foundation for the PAM growth and constancy enhancement of an advanced Cas9 nuclease. PLoS Biol. 17, e3000496 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anders, C., Bargsten, Ok. & Jinek, M. Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol. Cell 61, 895–902 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo, M. et al. Structural insights right into a excessive constancy variant of SpCas9. Cell Res. 29, 183–192 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nishimasu, H. et al. Structural foundation for the altered PAM recognition by engineered CRISPR-Cpf1. Mol. Cell 67, 139–147.e2 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shams, A. et al. Complete deletion panorama of CRISPR-Cas9 identifies minimal RNA-guided DNA-binding modules. Nat. Commun. 12, 5664 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Donohoue, P. D. et al. Conformational management of Cas9 by CRISPR hybrid RNA-DNA guides mitigates off-target exercise in T cells. Mol. Cell 81, 3637–3649.e5 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Townshend, R. J. L. et al. Geometric deep studying of RNA construction. Science 373, 1047–1051 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wei, J., Chen, S., Zong, L., Gao, X. & Li, Y. Protein-RNA interplay prediction with deep studying: construction issues. Preprint at arXiv https://arxiv.org/abs/2107.12243 (2021).

  • Nierzwicki, Ł. & Palermo, G. Molecular dynamics to foretell cryo-EM: capturing transitions and short-lived conformational states of biomolecules. Entrance. Mol. Biosci. 8, 641208 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, J. et al. Gaussian accelerated molecular dynamics: ideas and purposes. Wiley Interdiscip. Rev. Comput. Mol. Sci. 11, e1521 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, Y., Luo, M., Dolan, A. E., Liao, M. & Ke, A. Construction foundation for RNA-guided DNA degradation by Cascade and Cas3. Science 361, eaat0839 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments