Dienstag, August 2, 2022
StartBiochemistryStructural foundation for inhibition of the Cation-chloride cotransporter NKCC1 by the diuretic...

Structural foundation for inhibition of the Cation-chloride cotransporter NKCC1 by the diuretic drug bumetanide


  • Voelker, J. R. et al. Comparability of loop diuretics in sufferers with persistent renal insufficiency. Kidney Int. 32, 572–578 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sica, D. A., Carter, B., Cushman, W. & Hamm, L. Thiazide and loop diuretics. J. Clin. Hypertens. (Greenwich) 13, 639–643 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Oh, S. W. & Han, S. Y. Loop diuretics in scientific apply. Electrolyte Blood Press 13, 17–21 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Malha, L. & Mann, S. J. Loop diuretics within the remedy of hypertension. Curr. Hypertens. Rep. 18, 27 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Elliott, W. J. & Jurca, S. Loop diuretics are most acceptable for hypertension remedy in persistent kidney illness. J. Am. Soc. Hypertens. 10, 285–287 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Wittner, M., Di Stefano, A., Wangemann, P. & Greger, R. How do loop diuretics act? Medication 41(Suppl 3), 1–13 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shankar, S. S. & Brater, D. C. Loop diuretics: from the Na-Okay-2Cl transporter to scientific use. Am. J. Physiol. Ren. Physiol. 284, F11–F21 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Rybak, L. P. Ototoxicity of loop diuretics. Otolaryngol. Clin. North Am. 26, 829–844 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ding, D. et al. Ototoxic results and mechanisms of loop diuretics. J. Otol. 11, 145–156 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Delpire, E., Lu, J., England, R., Boring, C. & Thorne, T. Deafness and imbalance related to inactivation of the secretory Na-Okay-2Cl co-transporter. Nat. Genet 22, 192–195 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Flagella, M. et al. Mice missing the basolateral Na-Okay-2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J. Biol. Chem. 274, 26946–26955 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lykke, Okay. et al. The seek for NKCC1-selective medicine for the remedy of epilepsy: Construction-function relationship of bumetanide and varied bumetanide derivatives in inhibiting the human cation-chloride cotransporter NKCC1A. Epilepsy Behav. 59, 42–49 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Dzhala, V. I. et al. NKCC1 transporter facilitates seizures within the growing mind. Nat. Med. 11, 1205–1213 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kharod, S. C., Kang, S. Okay. & Kadam, S. D. Off-label use of bumetanide for mind problems: an summary. Entrance Neurosci. 13, 310 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eftekhari, S. et al. Bumetanide reduces seizure frequency in sufferers with temporal lobe epilepsy. Epilepsia 54, e9–e12 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kahle, Okay. T., Barnett, S. M., Sassower, Okay. C. & Staley, Okay. J. Decreased seizure exercise in a human neonate handled with bumetanide, an inhibitor of the Na(+)-Okay(+)-2Cl(-) cotransporter NKCC1. J. Little one Neurol. 24, 572–576 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Damier, P., Hammond, C. & Ben-Ari, Y. Bumetanide to deal with Parkinson Illness: a report of 4 instances. Clin. Neuropharmacol. 39, 57–59 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Delpire, E. Cation-chloride cotransporters in neuronal communication. N. Physiol. Sci. 15, 309–312 (2000).

    CAS 

    Google Scholar
     

  • Payne, J. A., Rivera, C., Voipio, J. & Kaila, Okay. Cation-chloride co-transporters in neuronal communication, improvement and trauma. Developments Neurosci. 26, 199–206 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yamada, J. et al. Cl- uptake selling depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J. Physiol. 557, 829–841 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Glykys, J. et al. Chloride dysregulation, seizures, and cerebral edema: a relationship with therapeutic potential. Developments Neurosci. 40, 276–294 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schulte, J. T., Wierenga, C. J. & Bruining, H. Chloride transporters and GABA polarity in developmental, neurological and psychiatric circumstances. Neurosci. Biobehav Rev. 90, 260–271 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hampel, P., Romermann, Okay., Gramer, M. & Loscher, W. The seek for brain-permeant NKCC1 inhibitors for the remedy of seizures: Pharmacokinetic-pharmacodynamic modelling of NKCC1 inhibition by azosemide, torasemide, and bumetanide in mouse mind. Epilepsy Behav. 114, 107616 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Chew, T. A. et al. Construction and mechanism of the cation-chloride cotransporter NKCC1. Nature 572, 488–492 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu, S. et al. Cryo-EM constructions of the human cation-chloride cotransporter KCC1. Science 366, 505–508 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chi, X. et al. Cryo-EM constructions of the full-length human KCC2 and KCC3 cation-chloride cotransporters. Cell Res. 31, 482–484 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reid, M. S., Kern, D. M. & Brohawn, S. G. Cryo-EM construction of the potassium-chloride cotransporter KCC4 in lipid nanodiscs. Elife 9, e52505 (2020).

  • Xie, Y. et al. Constructions and an activation mechanism of human potassium-chloride cotransporters. Sci Adv. 6, eabc5883 (2020).

  • Chi, G. et al. Phospho-regulation, nucleotide binding and ion entry management in potassium-chloride cotransporters. EMBO J. 40, e107294 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang, X., Wang, Q. & Cao, E. Construction of the human cation-chloride cotransporter NKCC1 decided by single-particle electron cryo-microscopy. Nat. Commun. 11, 1016 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, S. et al. The structural foundation of perform and regulation of neuronal cotransporters NKCC1 and KCC2. Commun. Biol. 4, 226 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Alessi, D. R. et al. The WNK-SPAK/OSR1 pathway: grasp regulator of cation-chloride cotransporters. Sci. Sign 7, re3 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Gagnon, Okay. B. & Delpire, E. On the substrate recognition and adverse regulation of SPAK, a kinase modulating Na+-Okay+-2Cl- cotransport exercise. Am. J. Physiol. Cell Physiol. 299, C614–C620 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ostrosky-Frid, M., Castaneda-Bueno, M. & Gamba, G. Regulation of the renal NaCl cotransporter by the WNK/SPAK pathway: classes realized from genetically altered animals. Am. J. Physiol. Ren. Physiol. 316, F146–F158 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Boyden, L. M. et al. Mutations in kelch-like 3 and cullin 3 trigger hypertension and electrolyte abnormalities. Nature 482, 98–102 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wilson, F. H. et al. Human hypertension brought on by mutations in WNK kinases. Science 293, 1107–1112 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Forbush, B. third, Haas, M. & Lytle, C. Na-Okay-Cl cotransport within the shark rectal gland. I. Regulation within the intact perfused gland. Am. J. Physiol. 262, C1000–C1008 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Haas, M. & Forbush, B. third [3H]bumetanide binding to duck pink cells. Correlation with inhibition of (Na + Okay + 2Cl) co-transport. J. Biol. Chem. 261, 8434–8441 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao Y., Shen J., Wang Q., Zhou M., Cao E. Inhibitory and transport mechanisms of the human cation-chloride cotransport KCC1. bioRxiv, https://doi.org/10.1101/2020.07.26.221770 (2020).

  • Forbush, B. third & Palfrey, H. C. [3H]bumetanide binding to membranes remoted from canine kidney outer medulla. Relationship to the Na,Okay,Cl co-transport system. J. Biol. Chem. 258, 11787–11792 (1983).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hampel, P., Romermann, Okay., MacAulay, N. & Loscher, W. Azosemide is stronger than bumetanide and varied different loop diuretics to inhibit the sodium-potassium-chloride-cotransporter human variants hNKCC1A and hNKCC1B. Sci. Rep. 8, 9877 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Feig, P. U. Mobile mechanism of motion of loop diuretics – implications for drug effectiveness and adverse-effects. Am. J. Cardiol. 57, A14–A19 (1986).

    Article 

    Google Scholar
     

  • Somasekharan, S., Tanis, J. & Forbush, B. Loop diuretic and ion-binding residues revealed by scanning mutagenesis of transmembrane helix 3 (TM3) of Na-Okay-Cl cotransporter (NKCC1). J. Biol. Chem. 287, 17308–17317 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Darman, R. B. & Forbush, B. A regulatory locus of phosphorylation within the N terminus of the Na-Okay-Cl cotransporter, NKCC1. J. Biol. Chem. 277, 37542–37550 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Flemmer, A. W., Gimenez, I., Dowd, B. F., Darman, R. B. & Forbush, B. Activation of the Na-Okay-Cl cotransporter NKCC1 detected with a phospho-specific antibody. J. Biol. Chem. 277, 37551–37558 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dehaye, J. P., Nagy, A., Premkumar, A. & Turner, R. J. Identification of a functionally vital conformation-sensitive area of the secretory Na+-Okay+-2Cl- cotransporter (NKCC1). J. Biol. Chem. 278, 11811–11817 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Monette, M. Y., Somasekharan, S. & Forbush, B. Molecular motions concerned in Na-Okay-Cl cotransporter-mediated ion transport and transporter activation revealed by inside cross-linking between transmembrane domains 10 and 11/12. J. Biol. Chem. 289, 7569–7579 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Drew, D. & Boudker, O. Shared Molecular Mechanisms of Membrane Transporters. Annu Rev. Biochem 85, 543–572 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Penmatsa, A. & Gouaux, E. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters. J. Physiol. 592, 863–869 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Forrest, L. R. & Rudnick, G. The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiol. (Bethesda) 24, 377–386 (2009).

    CAS 

    Google Scholar
     

  • Nielsen, O. B., Nielsen, C. Okay. & Feit, P. W. Aminobenzoic acid diuretics. 5. 3-Amino-4-arylmethyl-5-sulfamylbenzoic acid derivatives and associated compounds. J. Med Chem. 16, 1170–1177 (1973).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feit, P. W. Bumetanide-the approach to its chemical construction. J. Clin. Pharm. 21, 531–536 (1981).

    CAS 
    Article 

    Google Scholar
     

  • Savardi, A. et al. Discovery of a Small Molecule Drug Candidate for Selective NKCC1 Inhibition in Mind Problems. Chem 6, 2073–2096 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Borgogno, M. et al. Design, Synthesis, In Vitro and In Vivo Characterization of Selective NKCC1 Inhibitors for the Therapy of Core Signs in Down Syndrome. J. Med Chem. 64, 10203–10229 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lytle, C., McManus, T. J. & Haas, M. A mannequin of Na-Okay-2Cl cotransport primarily based on ordered ion binding and glide symmetry. Am. J. Physiol. 274, C299–C309 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blaesse, P. et al. Oligomerization of KCC2 correlates with improvement of inhibitory neurotransmission. J. Neurosci. 26, 10407–10419 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Watanabe, M., Wake, H., Moorhouse, A. J. & Nabekura, J. Clustering of neuronal Okay+-Cl- cotransporters in lipid rafts by tyrosine phosphorylation. J. Biol. Chem. 284, 27980–27988 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Monette, M. Y. & Forbush, B. Regulatory activation is accompanied by motion within the C terminus of the Na-Okay-Cl cotransporter (NKCC1). J. Biol. Chem. 287, 2210–2220 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural research. Nat. Protoc. 9, 2574–2585 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Watts, S. D., Suchland, Okay. L., Amara, S. G. & Ingram, S. L. A delicate membrane-targeted biosensor for monitoring adjustments in intracellular chloride in neuronal processes. PLoS One 7, e35373 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Galietta, L. J., Haggie, P. M. & Verkman, A. S. Inexperienced fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett. 499, 220–224 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Somasekharan, S., Monette, M. Y. & Forbush, B. Useful expression of human NKCC1 from an artificial cassette-based cDNA: introduction of extracellular epitope tags and removing of cysteines. PLoS One 8, e82060 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: Quick and correct defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bepler, T. et al. Constructive-unlabeled convolutional neural networks for particle choosing in cryo-electron micrographs. Nat. Strategies 16, 1153–1160 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for speedy unsupervised cryo-EM construction willpower. Nat. Strategies 14, 290–296 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Scheres, S. H. RELION: implementation of a Bayesian method to cryo-EM construction willpower. J. Struct. Biol. 180, 519–530 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian method to beam-induced movement correction in cryo-EM single-particle evaluation. IUCrJ 6, 5–17 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Options and improvement of Coot. Acta Crystallogr D. Biol. Crystallogr 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction resolution. Acta Crystallogr D. Biol. Crystallogr 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Williams, C. J. et al. MolProbity: Extra and higher reference knowledge for improved all-atom construction validation. Protein Sci. 27, 293–315 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krissinel, E. Inventory-based detection of protein oligomeric states in jsPISA. Nucleic Acids Res. 43, W314–W319 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Olsson, M. H., Sondergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: Constant Therapy of Inner and Floor Residues in Empirical pKa Predictions. J. Chem. Principle Comput 7, 525–537 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schott-Verdugo, S. & Gohlke, H. PACKMOL-Memgen: A Easy-To-Use, Generalized Workflow for Membrane-Protein-Lipid-Bilayer System Constructing. J. Chem. Inf. Mannequin 59, 2522–2528 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Salomon-Ferrer, R., Case, D. A. & Walker, R. C. An summary of the Amber biomolecular simulation bundle. Wires Comput Mol. Sci. 3, 198–210 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Maier, J. A. et al. ff14SB: bettering the accuracy of protein facet chain and spine parameters from ff99SB. J. Chem. Principle Comput. 11, 3696–3713 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dickson, C. J. et al. Lipid14: The Amber lipid power area. J. Chem. Principle Comput. 10, 865–879 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of Easy Potential Features for Simulating Liquid Water. J. Chem. Phys. 79, 926–935 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Joung, I. S. & Cheatham, T. E. Dedication of alkali and halide monovalent ion parameters to be used in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020–9041 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Darden, T., York, D. & Pedersen, L. Particle Mesh Ewald – an N.Log(N) Methodology for Ewald Sums in Massive Programs. J. Chem. Phys. 98, 10089–10092 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ryckaert, J. P., Ciccotti, G. & Berendsen, H. J. C. Numerical-integration of Cartesian equations of movement of a system with constraints – molecular-dynamics of N-alkanes. J. Comput Phys. 23, 327–341 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Trott, O. & Olson, A. J. AutoDock Vina: bettering the velocity and accuracy of docking with a brand new scoring perform, environment friendly optimization, and multithreading. J. Comput Chem. 31, 455–461 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    How Is Half Of Nato

    How Is Half Of Pc

    How Is Msw Course

    How Is It

    Recent Comments