Sonntag, Juli 31, 2022
StartBiochemistryStructural insights into the mechanism of archaellar rotational switching

Structural insights into the mechanism of archaellar rotational switching


  • Albers, S. V. & Jarrell, Okay. F. The archaellum: how Archaea swim. Entrance. Microbiol. 6, 23 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Albers, S. V. & Jarrell, Okay. F. The archaellum: an replace on the distinctive archaeal motility construction. Traits Microbiol. 26, 351–362 (2018).

  • Altegoer, F. & Bange, G. Undiscovered areas on the molecular panorama of flagellar meeting. Curr. Opin. Microbiol. 28, 98–105 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chevance, F. F. V. & Hughes, Okay. T. Coordinating meeting of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455–465 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shahapure, R., Driessen, R. P. C., Haurat, M. F., Albers, S.-V. V. & Dame, R. Th. The archaellum: a rotating sort IV pilus. Mol. Microbiol. 91, 716–723 (2014).

  • Lassak, Okay., Ghosh, A. & Albers, S.-V. Range, meeting and regulation of archaeal sort IV pili-like and non-type-IV pili-like floor buildings. Res. Microbiol. 163, 630–644 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jarrell, Okay. F. & McBride, M. J. The surprisingly various ways in which prokaryotes transfer. Nat. Rev. Microbiol. 6, 466–476 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, P. C. & Rietsch, A. Fueling sort III secretion. Traits Microbiol. 23, 296–300 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Streif, S., Staudinger, W. F., Marwan, W. & Oesterhelt, D. Flagellar rotation within the archaeon halobacterium salinarum depends upon ATP. J. Mol. Biol. 384, 1–8 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Iwata, S., Kinosita, Y., Uchida, N., Nakane, D. & Nishizaka, T. Motor torque measurement of Halobacterium salinarum archaellar suggests a common mannequin for ATP-driven rotary motors. Commun. Biol. 2, 199 (2019).

  • Quax, T. E. F., Albers, S. V. & Pfeiffer, F. Taxis in archaea. Emerg. Prime. Life Sci. 2, 535–546 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Briegel, A. et al. Structural conservation of chemotaxis equipment throughout Archaea and Micro organism. Environ. Microbiol. Rep. 7, 414–419 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wuichet, Okay. & Zhulin, I. B. Origins and diversification of a posh sign transduction system in prokaryotes. Sci. Sign. 3, ra50–ra50 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wuichet, Okay., Cantwell, B. J. & Zhulin, I. B. Evolution and phyletic distribution of two-component sign transduction programs. Curr. Opin. Microbiol. 13, 219–225 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Porter, S. L., Wadhams, G. H. & Armitage, J. P. Sign processing in advanced chemotaxis pathways. Nat. Rev. Microbiol 9, 153–165 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hess, J. F., Oosawa, Okay., Kaplan, N. & Simon, M. I. Phosphorylation of three proteins within the signaling pathway of bacterial chemotaxis. Cell 53, 79–87 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bourret, R. B., Hess, J. F. & Simon, M. I. Conserved aspartate residues and phosphorylation in sign transduction by the chemotaxis protein CheY. Proc. Natl Acad. Sci. USA 87, 41–45 (1990).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hughson, A. G. & Hazelbauer, G. L. Detecting the conformational change of transmembrane signaling in a bacterial chemoreceptor by measuring results on disulfide cross-linking in vivo. Proc. Natl Acad. Sci. USA 93, 11546–11551 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chervitz, S. A. & Falke, J. J. Molecular mechanism of transmembrane signaling by the aspartate receptor: a mannequin. Proc. Natl Acad. Sci. USA 93, 2545–2550 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Briegel, A. et al. Construction of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. eLife 2014, e02151 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Briegel, A. et al. Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc. Natl Acad. Sci. USA 109, 3766–3771 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu, J. et al. Molecular structure of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc. Natl Acad. Sci. USA 109, E1481–E1488 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salah Ud-Din, A. I. M. & Roujeinikova, A. Methyl-accepting chemotaxis proteins: a core sensing aspect in prokaryotes and archaea. Cell. Mol. Life Sci. 74, 3293–3303 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rudolph, J., Tolliday, N., Schmitt, C., Schuster, S. C. & Oesterhelt, D. Phosphorylation in halobacterial sign transduction. EMBO J. 14, 4249–4257 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ahn, D.-R. R., Tune, H. J., Kim, J., Lee, S. & Park, S. Y. The crystal construction of an activated Thermotoga maritima CheY with N-terminal area of FliM. Int. J. Biol. Macromol. 54, 76–83 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Quax, T. E. F. et al. Construction and performance of the archaeal response regulator CheY. Proc. Natl Acad. Sci. USA 115, E1259–E1268 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee, S. Y. et al. Crystal construction of activated CheY: comparability with different activated receiver domains. J. Biol. Chem. 276, 16425–16431 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paul, Okay., Brunstetter, D., Titen, S. & Blair, D. F. A molecular mechanism of course switching within the flagellar motor of Escherichia coli. Proc. Natl Acad. Sci. USA 108, 17171–17176 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dyer, C. M., Vartanian, A. S., Zhou, H. & Dahlquist, F. W. A molecular mechanism of bacterial flagellar motor switching. J. Mol. Biol. 388, 71–84 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee, S. Y. et al. Crystal construction of an activated response regulator sure to its goal. Nat. Struct. Biol. 8, 52–56 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dyer, C. M. et al. Construction of the constitutively lively double mutant CheYD13K Y106W alone and in advanced with a FliM peptide. J. Mol. Biol. 342, 1325–1335 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schuhmacher, J. S., Thormann, Okay. M. & Bange, G. How micro organism keep location and variety of flagella?. FEMS Microbiol. Rev. 39, 812–822 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Minamino, T. & Imada, Okay. The bacterial flagellar motor and its structural range. Traits Microbiol. 23, 267–274 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ogawa, R., Abe-Yoshizumi, R., Kishi, T., Homma, M. & Kojima, S. Interplay of the C-terminal tail of FliF with FliG from the Na + -driven flagellar motor of Vibrio alginolyticus. J. Bacteriol. 197, 63–72 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Lee, L. Okay., Ginsburg, M. A., Crovace, C., Donohoe, M. & Inventory, D. Construction of the torque ring of the flagellar motor and the molecular foundation for rotational switching. Nature 466, 996–1000 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Minamino, T., Kinoshita, M. & Namba, Okay. Directional switching mechanism of the bacterial flagellar motor. Comput. Struct. Biotechnol. J. 17, 1075 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma, Q., Sowa, Y., Baker, M. A. B. & Bai, F. Bacterial flagellar motor change in response to CheY-P regulation and motor structural alterations. Biophys. J. 110, 1411 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ward, E. et al. Group of the flagellar change advanced of bacillus subtilis. J. Bacteriol. 201, e00626-18 (2019).

  • McAdams, Okay. et al. The buildings of T87I phosphono-CheY and T87I/Y106W phosphono-CheY assist to clarify their binding affinities to the FliM and CheZ peptides. Arch. Biochem. Biophys. 479, 105–113 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sircar, R., Greenswag, A. R., Bilwes, A. M., Gonzalez-Bonet, G. & Crane, B. R. Construction and exercise of the flagellar rotor protein FliY: a member of the CheC phosphatase household. J. Biol. Chem. 288, 13493–13502 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schlesner, M. et al. Identification of Archaea-specific chemotaxis proteins which work together with the flagellar equipment. BMC Microbiol. 9, 56 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Schlesner, M. et al. The protein interplay community of a taxis sign transduction system in a Halophilic Archaeon. BMC Microbiol. 12, 272 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, Z., Rodriguez-Franco, M., Albers, S. V. & Quax, T. E. F. The change advanced ArlCDE connects the chemotaxis system and the archaellum. Mol. Microbiol. 114, 468–479 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Leigh, J. A., Albers, S.-V., Atomi, H. & Allers, T. Mannequin organisms for genetics within the area Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol. Rev. 35, 577–608 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, Z. et al. Positioning of the motility equipment in halophilic archaea. mBio 10, e00377-19 (2019).

  • Paithankar, Okay. et al. Construction of the archaeal chemotaxis protein CheY in a domain-swapped dimeric conformation. Acta Crystallogr. Sect. F, Struct. Biol. Commun. 75, 576–585 (2019).

  • Qi, G., Lee, R. & Hayward, S. A complete and non-redundant database of protein area actions. Bioinformatics 21, 2832–2838 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Holm, L. Utilizing dali for protein construction comparability. In Strategies in Molecular Biology. vol. 2112. 29–42 (Humana Press Inc., 2020).

  • Scheffzek, Okay. & Welti, S. Pleckstrin homology (PH) like domains – Versatile modules in protein-protein interplay platforms. FEBS Lett. 586, 2662–2673 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gibson, T. J., Hyvönen, M., Musacchio, A., Saraste, M. & Birney, E. PH area: the primary anniversary. Traits Biochem. Sci. 19, 349–353 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Musacchio, A., Gibson, T., Rice, P., Thompson, J. & Saraste, M. The PH area: a standard piece within the structural pathcwork of signalling proteins. Traits Biochem. Sci. 18, 343–348 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alam, M. & Oesterhelt, D. Morphology, perform and isolation of halobacterial flagella. J. Mol. Biol. 176, 459–475 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rudolph, J. & Oesterhelt, D. Deletion evaluation of the che operon within the archaeon halobacterium salinarium. J. Mol. Biol. 258, 548–554 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Afanzar, O. et al. The switching mechanism of the bacterial rotary motor combines tight regulation with inherent flexibility. EMBO J. 40, e104683 (2021).

  • Park, S.-Y., Lowder, B., Bilwes, A. M., Blair, D. F. & Crane, B. R. Construction of FliM gives perception into meeting of the change advanced within the bacterial flagella motor. Proc. Natl Acad. Sci. USA 103, 11886–11891 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Daum, B. et al. Construction and in situ organisation of the Pyrococcus furiosus archaellum equipment. eLife 6, e27470 (2017).

  • Lemmon, M. A., Ferguson, Okay. M. & Schlessinger, J. PH domains: various sequences with a standard fold recruit signaling molecules to the cell floor. Cell 85, 621–624 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chang, Y. et al. Molecular mechanism for rotational switching of the bacterial flagellar motor. Nat. Struct. Mol. Biol. 27, 1041–1047 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sambrook, J. J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Handbook. Chilly Spring Harbor Laboratory (1989).

  • Duggin, I. G. et al. CetZ tubulin-like proteins management archaeal cell form. Nature 519, 362–365 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McCarthy, A. A. et al. ID30B – a flexible beamline for macromolecular crystallography experiments on the ESRF. J. Synchrotron Radiat. 25, 1249–1260 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction resolution. Acta Crystallogr. D Biol. Crystallogr 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McCoy, A. J. et al. Phaser crystallographic software program. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Emsley, P. & Cowtan, Okay. Coot: model-building instruments for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Schrödinger, L. The JyMOL Molecular Graphics Improvement Part, Model 1.8. (2015).

  • Pettersen, E. F. et al. UCSF Chimera?A visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Allers, T., Ngo, H. P., Mevarech, M. & Lloyd, R. G. Improvement of extra selectable markers for the halophilic archaeon Haloferax volcanii based mostly on the leuB and trpA genes. Appl. Environ. Microbiol. 70, 943–953 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a instrument for prime throughput bacterial cell detection and quantitative evaluation. Nat. Microbiol. 1, 16077 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments