Wu, M., Yang, L.-Z. & Chen, L.-L. Lengthy noncoding RNA and protein abundance in lncRNPs. RNA 27, 1427–1440 (2021).
Travers, A. Transcriptional switches: the position of mass motion. Phys. Life Rev. 1, 57–69 (2004).
Chong, S. et al. Imaging dynamic and selective low-complexity area interactions that management gene transcription. Science 361, eaar2555 (2018).
Reisser, M. et al. Single-molecule imaging correlates reducing nuclear quantity with growing TF–chromatin associations throughout zebrafish improvement. Nat. Commun. 9, 5218 (2018).
Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by lengthy non-coding RNAs and its organic features. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).
Henninger, J. E. et al. RNA-mediated suggestions management of transcriptional condensates. Cell 184, 207–225.e24 (2021).
Roden, C. & Gladfelter, A. S. RNA contributions to the shape and performance of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).
Lyon, A. S., Peeples, W. B. & Rosen, M. Okay. A framework for understanding the features of biomolecular condensates throughout scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).
Bhat, P., Honson, D. & Guttman, M. Nuclear compartmentalization as a mechanism of quantitative management of gene expression. Nat. Rev. Mol. Cell Biol. 22, 653–670 (2021).
Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by managed dissolution/condensation. Science 324, 1729–1732 (2009).
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. Okay. Biomolecular condensates: organizers of mobile biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
Garcia-Jove Navarro, M. et al. RNA is a vital component for the sizing and the composition of phase-separated RNA–protein condensates. Nat. Commun. 10, 3230 (2019).
Wang, M. et al. Stress-induced low complexity RNA prompts physiological amyloidogenesis. Cell Rep. 24, 1713–1721.e4 (2018).
Hur, W. et al. CDK-regulated section separation seeded by histone genes ensures exact development and performance of histone locus our bodies. Dev. Cell 54, 379–394.e6 (2020).
Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule meeting by condensation. Cell 181, 346–361.e17 (2020).
Yang, P. et al. G3BP1 is a tunable change that triggers section separation to assemble stress granules. Cell 181, 325–345.e28 (2020).
Aillaud, M. & Schulte, L. N. Rising roles of lengthy noncoding RNAs within the cytoplasmic milieu. Noncoding RNA 6, 44 (2020).
Yamazaki, T. et al. Purposeful domains of NEAT1 architectural lncRNA induce paraspeckle meeting by way of section separation. Mol. Cell 70, 1038–1053.e7 (2018).
Fox, A. H., Nakagawa, S., Hirose, T. & Bond, C. S. Paraspeckles: the place lengthy noncoding RNA meets section separation. Developments Biochem. Sci. 43, 124–135 (2018).
Pessina, F. et al. Purposeful transcription promoters at DNA double-strand breaks mediate RNA-driven section separation of damage-response elements. Nat. Cell Biol. 21, 1286–1299 (2019).
Li, R.-H. et al. A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid–liquid section separation to advertise oncogenic YAP signaling. Cell Res. 31, 1088–1105 (2021).
Daneshvar, Okay. et al. lncRNA DIGIT and BRD3 protein kind phase-separated condensates to control endoderm differentiation. Nat. Cell Biol. 22, 1211–1222 (2020).
Huo, X. et al. The nuclear matrix protein SAFB cooperates with main satellite tv for pc RNAs to stabilize heterochromatin structure partially by way of section separation. Mol. Cell 77, 368–383.e7 (2020).
McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating section separation in reside cells: analysis, caveats, and purposeful penalties. Genes Dev. 33, 1619–1634 (2019).
Lee, S. et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164, 69–80 (2016).
Elguindy, M. M. & Mendell, J. T. NORAD-induced Pumilio section separation is required for genome stability. Nature 595, 303–308 (2021).
Tichon, A. et al. A conserved considerable cytoplasmic lengthy noncoding RNA modulates repression by Pumilio proteins in human cells. Nat. Commun. 7, 12209 (2016).
Simon, M. D. et al. Excessive-resolution Xist binding maps reveal two-step spreading throughout X-chromosome inactivation. Nature 504, 465–469 (2013).
Sunwoo, H., Wu, J. Y. & Lee, J. T. The Xist RNA–PRC2 advanced at 20-nm decision reveals a low Xist stoichiometry and suggests a hit-and-run mechanism in mouse cells. Proc. Natl Acad. Sci. USA 112, E4216–E4225 (2015).
Pacini, G. et al. Built-in evaluation of Xist upregulation and X-chromosome inactivation with single-cell and single-allele decision. Nat. Commun. 12, 3638 (2021).
Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome structure to unfold throughout the X chromosome. Science 341, 1237973 (2013).
Markaki, Y. et al. Xist nucleates native protein gradients to propagate silencing throughout the X chromosome. Cell 184, 6174–6192.e32 (2021).
Monfort, A. et al. Identification of spen as a vital issue for xist perform by way of ahead genetic screening in haploid embryonic stem cells. Cell Rep. 12, 554–561 (2015).
Lu, Z. et al. RNA duplex map in dwelling cells reveals higher-order transcriptome construction. Cell 165, 1267–1279 (2016).
Jachowicz, J. W. et al. Xist spatially amplifies SHARP/SPEN recruitment to stability chromosome-wide silencing and specificity to the X chromosome. Nat. Struct. Mol. Biol. 29, 239–249 (2022).
Pandya-Jones, A. et al. A protein meeting mediates Xist localization and gene silencing. Nature 587, 145–151 (2020).
Wutz, A. & Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered throughout ES cell differentiation. Mol. Cell 5, 695–705 (2000).
Brockdorff, N., Bowness, J. S. & Wei, G. Progress towards understanding chromosome silencing by Xist RNA. Genes Dev. 34, 733–744 (2020).
Wang, C.-Y., Colognori, D., Sunwoo, H., Wang, D. & Lee, J. T. PRC1 collaborates with SMCHD1 to fold the X-chromosome and unfold Xist RNA between chromosome compartments. Nat. Commun. 10, 2950 (2019).
Colognori, D., Sunwoo, H., Wang, D., Wang, C.-Y. & Lee, J. T. Xist repeats A and B account for 2 distinct phases of X inactivation institution. Dev. Cell 54, 21–32.e5 (2020).
Weidmann, C. A., Mustoe, A. M., Jariwala, P. B., Calabrese, J. M. & Weeks, Okay. M. Evaluation of RNA–protein networks with RNP-MaP defines purposeful hubs on RNA. Nat. Biotechnol. 39, 347–356 (2021).
Frank, L. & Rippe, Okay. Repetitive RNAs as regulators of chromatin-associated subcompartment formation by section separation. J. Mol. Biol. 432, 4270–4286 (2020).
Ziv, O. et al. Structural options inside the NORAD lengthy noncoding RNA underlie environment friendly repression of Pumilio exercise. Preprint at bioRxiv https://doi.org/10.1101/2021.11.19.469243 (2021).
Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by totally different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002).
Lu, Z. et al. Structural modularity of the XIST ribonucleoprotein advanced. Nat. Commun. 11, 6163 (2020).
Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).
Quinodoz, S. A. et al. RNA promotes the formation of spatial compartments within the nucleus. Cell 184, 5775–5790.e30 (2021).
Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid section separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).
Schertzer, M. D. et al. lncRNA-induced unfold of polycomb managed by genome structure, RNA abundance, and CpG Island DNA. Mol. Cell 75, 523–537.e10 (2019).
Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by concentrating on G9a to chromatin. Science 322, 1717–1720 (2008).
Pintacuda, G. et al. hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to ascertain polycomb-mediated chromosomal silencing. Mol. Cell 68, 955–969 (2017).
Isono, Okay. et al. SAM area polymerization hyperlinks subnuclear clustering of PRC1 to gene silencing. Dev. Cell 26, 565–577 (2013).
Hacisuleyman, E. et al. Topological group of multichromosomal areas by the lengthy intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol. 21, 198–206 (2014).
Nozawa, R.-S. et al. SAF-A regulates interphase chromosome construction by way of oligomerization with chromatin-associated RNAs. Cell 169, 1214–1227.e18 (2017).
Reichholf, B. et al. Time-resolved small RNA sequencing unravels the molecular ideas of microRNA homeostasis. Mol. Cell 75, 756–768.e7 (2019).
Kingston, E. R. & Bartel, D. P. World analyses of the dynamics of mammalian microRNA metabolism. Genome Res. 29, 1777–1790 (2019).
Gebert, L. F. R. & MacRae, I. J. Regulation of microRNA perform in animals. Nat. Rev. Mol. Cell Biol. 20, 21–37 (2019).
Shi, C. Y. et al. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science 370, eabc9359 (2020).
Han, J. et al. A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science 370, eabc9546 (2020).
Kleaveland, B., Shi, C. Y., Stefano, J. & Bartel, D. P. A community of noncoding regulatory RNAs acts within the mammalian mind. Cell 174, 350–362.e17 (2018).
Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H. & Bartel, D. P. Conserved perform of lincRNAs in vertebrate embryonic improvement regardless of fast sequence evolution. Cell 147, 1537–1550 (2011).
Cazalla, D., Yario, T. & Steitz, J. A. Down-regulation of a bunch microRNA by a herpesvirus saimiri noncoding RNA. Science 328, 1563–1566 (2010).
Ghini, F. et al. Endogenous transcripts management miRNA ranges and exercise in mammalian cells by target-directed miRNA degradation. Nat. Commun. 9, 3119 (2018).
Bitetti, A. et al. MicroRNA degradation by a conserved goal RNA regulates animal habits. Nat. Struct. Mol. Biol. 25, 244–251 (2018).
Denzler, R. et al. Influence of microRNA ranges, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. Mol. Cell 64, 565–579 (2016).
Piwecka, M. et al. Lack of a mammalian round RNA locus causes miRNA deregulation and impacts mind perform. Science 357, eaam8526 (2017).
Li, L. et al. Widespread microRNA degradation parts in goal mRNAs can help the encoded proteins. Genes Dev. 35, 1595–1609 (2021).
Calo, E. et al. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 518, 249–253 (2015).
Wu, M. et al. lncRNA SLERT controls section separation of FC/DFCs to facilitate Pol I transcription. Science 373, 547–555 (2021).
Xing, Y.-H. et al. SLERT regulates DDX21 rings related to Pol I transcription. Cell 169, 664–678.e16 (2017).
Wang, X. et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454, 126–130 (2008).
Liu, Z. et al. Hsp27 chaperones FUS section separation beneath the modulation of stress-induced phosphorylation. Nat. Struct. Mol. Biol. 27, 363–372 (2020).
Jia, C. et al. Totally different warmth shock proteins bind α-synuclein with distinct mechanisms and synergistically stop its amyloid aggregation. Entrance. Neurosci. 13, 1124 (2019).
Docter, B. E., Horowitz, S., Grey, M. J., Jakob, U. & Bardwell, J. C. A. Do nucleic acids moonlight as molecular chaperones? Nucleic Acids Res. 44, 4835–4845 (2016).
Bevilacqua, P. C., Williams, A. M., Chou, H.-L. & Assmann, S. M. RNA multimerization as an organizing pressure for liquid–liquid section separation. RNA 28, 16–26 (2022).
Riback, J. A. et al. Composition-dependent thermodynamics of intracellular section separation. Nature 581, 209–214 (2020).
Turoverov, Okay. Okay. et al. Stochasticity of organic smooth matter: rising ideas in intrinsically disordered proteins and organic section separation. Developments Biochem. Sci. 44, 716–728 (2019).
Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).
Peeples, W. & Rosen, M. Okay. Mechanistic dissection of elevated enzymatic fee in a phase-separated compartment. Nat. Chem. Biol. 17, 693–702 (2021).
Brockdorff, N. Native tandem repeat enlargement in Xist RNA as a mannequin for the functionalisation of ncRNA. Noncoding RNA 4, 28 (2018).
Langdon, E. M. et al. mRNA construction determines specificity of a polyQ-driven section separation. Science 360, 922–927 (2018).
Spitale, R. C. et al. RNA SHAPE evaluation in dwelling cells. Nat. Chem. Biol. 9, 18–20 (2013).
Ares, P. et al. Excessive decision atomic pressure microscopy of double-stranded RNA. Nanoscale 8, 11818–11826 (2016).
Uroda, T. et al. Conserved pseudoknots in lncRNA MEG3 are important for stimulation of the p53 pathway. Mol. Cell 75, 982–995.e9 (2019).
Unfried, J. P. et al. Lengthy noncoding RNA NIHCOLE promotes ligation effectivity of DNA double-strand breaks in hepatocellular carcinoma. Most cancers Res. 81, 4910–4925 (2021).
Geiger, F. et al. Liquid–liquid section separation underpins the formation of replication factories in rotaviruses. EMBO J. 40, e107711 (2021).
Merdanovic, M. et al. Activation by substoichiometric inhibition. Proc. Natl Acad. Sci. USA 117, 1414–1418 (2020).
Golden, R. J. et al. An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature 542, 197–202 (2017).
Bosson, A. D., Zamudio, J. R. & Sharp, P. A. Endogenous miRNA and goal concentrations decide susceptibility to potential ceRNA competitors. Mol. Cell 56, 347–359 (2014).
Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. & Stoffel, M. Assessing the ceRNA speculation with quantitative measurements of miRNA and goal abundance. Mol. Cell 54, 766–776 (2014).
Robert-Finestra, T. et al. SPEN is required for Xist upregulation throughout initiation of X chromosome inactivation. Nat. Commun. 12, 7000 (2021).
Rodermund, L. et al. Time-resolved structured illumination microscopy reveals key ideas of Xist RNA spreading. Science 372, eabe7500 (2021).
Maharana, S. et al. RNA buffers the section separation habits of prion-like RNA binding proteins. Science 360, 918–921 (2018).
Bracha, D. et al. Mapping native and international liquid section habits in dwelling cells utilizing photo-oligomerizable seeds. Cell 175, 1467–1480.e13 (2018).