Dienstag, August 2, 2022
StartBiochemistrySubstoichiometric motion of lengthy noncoding RNAs

Substoichiometric motion of lengthy noncoding RNAs


  • Wu, M., Yang, L.-Z. & Chen, L.-L. Lengthy noncoding RNA and protein abundance in lncRNPs. RNA 27, 1427–1440 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Travers, A. Transcriptional switches: the position of mass motion. Phys. Life Rev. 1, 57–69 (2004).

    Article 

    Google Scholar
     

  • Chong, S. et al. Imaging dynamic and selective low-complexity area interactions that management gene transcription. Science 361, eaar2555 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Reisser, M. et al. Single-molecule imaging correlates reducing nuclear quantity with growing TF–chromatin associations throughout zebrafish improvement. Nat. Commun. 9, 5218 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by lengthy non-coding RNAs and its organic features. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Henninger, J. E. et al. RNA-mediated suggestions management of transcriptional condensates. Cell 184, 207–225.e24 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roden, C. & Gladfelter, A. S. RNA contributions to the shape and performance of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lyon, A. S., Peeples, W. B. & Rosen, M. Okay. A framework for understanding the features of biomolecular condensates throughout scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bhat, P., Honson, D. & Guttman, M. Nuclear compartmentalization as a mechanism of quantitative management of gene expression. Nat. Rev. Mol. Cell Biol. 22, 653–670 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by managed dissolution/condensation. Science 324, 1729–1732 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. Okay. Biomolecular condensates: organizers of mobile biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Garcia-Jove Navarro, M. et al. RNA is a vital component for the sizing and the composition of phase-separated RNA–protein condensates. Nat. Commun. 10, 3230 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang, M. et al. Stress-induced low complexity RNA prompts physiological amyloidogenesis. Cell Rep. 24, 1713–1721.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hur, W. et al. CDK-regulated section separation seeded by histone genes ensures exact development and performance of histone locus our bodies. Dev. Cell 54, 379–394.e6 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule meeting by condensation. Cell 181, 346–361.e17 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yang, P. et al. G3BP1 is a tunable change that triggers section separation to assemble stress granules. Cell 181, 325–345.e28 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aillaud, M. & Schulte, L. N. Rising roles of lengthy noncoding RNAs within the cytoplasmic milieu. Noncoding RNA 6, 44 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Yamazaki, T. et al. Purposeful domains of NEAT1 architectural lncRNA induce paraspeckle meeting by way of section separation. Mol. Cell 70, 1038–1053.e7 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fox, A. H., Nakagawa, S., Hirose, T. & Bond, C. S. Paraspeckles: the place lengthy noncoding RNA meets section separation. Developments Biochem. Sci. 43, 124–135 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pessina, F. et al. Purposeful transcription promoters at DNA double-strand breaks mediate RNA-driven section separation of damage-response elements. Nat. Cell Biol. 21, 1286–1299 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, R.-H. et al. A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid–liquid section separation to advertise oncogenic YAP signaling. Cell Res. 31, 1088–1105 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Daneshvar, Okay. et al. lncRNA DIGIT and BRD3 protein kind phase-separated condensates to control endoderm differentiation. Nat. Cell Biol. 22, 1211–1222 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huo, X. et al. The nuclear matrix protein SAFB cooperates with main satellite tv for pc RNAs to stabilize heterochromatin structure partially by way of section separation. Mol. Cell 77, 368–383.e7 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating section separation in reside cells: analysis, caveats, and purposeful penalties. Genes Dev. 33, 1619–1634 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee, S. et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164, 69–80 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Elguindy, M. M. & Mendell, J. T. NORAD-induced Pumilio section separation is required for genome stability. Nature 595, 303–308 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tichon, A. et al. A conserved considerable cytoplasmic lengthy noncoding RNA modulates repression by Pumilio proteins in human cells. Nat. Commun. 7, 12209 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Simon, M. D. et al. Excessive-resolution Xist binding maps reveal two-step spreading throughout X-chromosome inactivation. Nature 504, 465–469 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sunwoo, H., Wu, J. Y. & Lee, J. T. The Xist RNA–PRC2 advanced at 20-nm decision reveals a low Xist stoichiometry and suggests a hit-and-run mechanism in mouse cells. Proc. Natl Acad. Sci. USA 112, E4216–E4225 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pacini, G. et al. Built-in evaluation of Xist upregulation and X-chromosome inactivation with single-cell and single-allele decision. Nat. Commun. 12, 3638 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome structure to unfold throughout the X chromosome. Science 341, 1237973 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Markaki, Y. et al. Xist nucleates native protein gradients to propagate silencing throughout the X chromosome. Cell 184, 6174–6192.e32 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Monfort, A. et al. Identification of spen as a vital issue for xist perform by way of ahead genetic screening in haploid embryonic stem cells. Cell Rep. 12, 554–561 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lu, Z. et al. RNA duplex map in dwelling cells reveals higher-order transcriptome construction. Cell 165, 1267–1279 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jachowicz, J. W. et al. Xist spatially amplifies SHARP/SPEN recruitment to stability chromosome-wide silencing and specificity to the X chromosome. Nat. Struct. Mol. Biol. 29, 239–249 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pandya-Jones, A. et al. A protein meeting mediates Xist localization and gene silencing. Nature 587, 145–151 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wutz, A. & Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered throughout ES cell differentiation. Mol. Cell 5, 695–705 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brockdorff, N., Bowness, J. S. & Wei, G. Progress towards understanding chromosome silencing by Xist RNA. Genes Dev. 34, 733–744 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, C.-Y., Colognori, D., Sunwoo, H., Wang, D. & Lee, J. T. PRC1 collaborates with SMCHD1 to fold the X-chromosome and unfold Xist RNA between chromosome compartments. Nat. Commun. 10, 2950 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Colognori, D., Sunwoo, H., Wang, D., Wang, C.-Y. & Lee, J. T. Xist repeats A and B account for 2 distinct phases of X inactivation institution. Dev. Cell 54, 21–32.e5 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weidmann, C. A., Mustoe, A. M., Jariwala, P. B., Calabrese, J. M. & Weeks, Okay. M. Evaluation of RNA–protein networks with RNP-MaP defines purposeful hubs on RNA. Nat. Biotechnol. 39, 347–356 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Frank, L. & Rippe, Okay. Repetitive RNAs as regulators of chromatin-associated subcompartment formation by section separation. J. Mol. Biol. 432, 4270–4286 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ziv, O. et al. Structural options inside the NORAD lengthy noncoding RNA underlie environment friendly repression of Pumilio exercise. Preprint at bioRxiv https://doi.org/10.1101/2021.11.19.469243 (2021).

  • Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by totally different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lu, Z. et al. Structural modularity of the XIST ribonucleoprotein advanced. Nat. Commun. 11, 6163 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Quinodoz, S. A. et al. RNA promotes the formation of spatial compartments within the nucleus. Cell 184, 5775–5790.e30 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid section separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schertzer, M. D. et al. lncRNA-induced unfold of polycomb managed by genome structure, RNA abundance, and CpG Island DNA. Mol. Cell 75, 523–537.e10 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by concentrating on G9a to chromatin. Science 322, 1717–1720 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pintacuda, G. et al. hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to ascertain polycomb-mediated chromosomal silencing. Mol. Cell 68, 955–969 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Isono, Okay. et al. SAM area polymerization hyperlinks subnuclear clustering of PRC1 to gene silencing. Dev. Cell 26, 565–577 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hacisuleyman, E. et al. Topological group of multichromosomal areas by the lengthy intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol. 21, 198–206 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nozawa, R.-S. et al. SAF-A regulates interphase chromosome construction by way of oligomerization with chromatin-associated RNAs. Cell 169, 1214–1227.e18 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reichholf, B. et al. Time-resolved small RNA sequencing unravels the molecular ideas of microRNA homeostasis. Mol. Cell 75, 756–768.e7 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kingston, E. R. & Bartel, D. P. World analyses of the dynamics of mammalian microRNA metabolism. Genome Res. 29, 1777–1790 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gebert, L. F. R. & MacRae, I. J. Regulation of microRNA perform in animals. Nat. Rev. Mol. Cell Biol. 20, 21–37 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shi, C. Y. et al. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science 370, eabc9359 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Han, J. et al. A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science 370, eabc9546 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kleaveland, B., Shi, C. Y., Stefano, J. & Bartel, D. P. A community of noncoding regulatory RNAs acts within the mammalian mind. Cell 174, 350–362.e17 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H. & Bartel, D. P. Conserved perform of lincRNAs in vertebrate embryonic improvement regardless of fast sequence evolution. Cell 147, 1537–1550 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cazalla, D., Yario, T. & Steitz, J. A. Down-regulation of a bunch microRNA by a herpesvirus saimiri noncoding RNA. Science 328, 1563–1566 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ghini, F. et al. Endogenous transcripts management miRNA ranges and exercise in mammalian cells by target-directed miRNA degradation. Nat. Commun. 9, 3119 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bitetti, A. et al. MicroRNA degradation by a conserved goal RNA regulates animal habits. Nat. Struct. Mol. Biol. 25, 244–251 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Denzler, R. et al. Influence of microRNA ranges, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. Mol. Cell 64, 565–579 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Piwecka, M. et al. Lack of a mammalian round RNA locus causes miRNA deregulation and impacts mind perform. Science 357, eaam8526 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Li, L. et al. Widespread microRNA degradation parts in goal mRNAs can help the encoded proteins. Genes Dev. 35, 1595–1609 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Calo, E. et al. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 518, 249–253 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu, M. et al. lncRNA SLERT controls section separation of FC/DFCs to facilitate Pol I transcription. Science 373, 547–555 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xing, Y.-H. et al. SLERT regulates DDX21 rings related to Pol I transcription. Cell 169, 664–678.e16 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, X. et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454, 126–130 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu, Z. et al. Hsp27 chaperones FUS section separation beneath the modulation of stress-induced phosphorylation. Nat. Struct. Mol. Biol. 27, 363–372 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jia, C. et al. Totally different warmth shock proteins bind α-synuclein with distinct mechanisms and synergistically stop its amyloid aggregation. Entrance. Neurosci. 13, 1124 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Docter, B. E., Horowitz, S., Grey, M. J., Jakob, U. & Bardwell, J. C. A. Do nucleic acids moonlight as molecular chaperones? Nucleic Acids Res. 44, 4835–4845 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bevilacqua, P. C., Williams, A. M., Chou, H.-L. & Assmann, S. M. RNA multimerization as an organizing pressure for liquid–liquid section separation. RNA 28, 16–26 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Riback, J. A. et al. Composition-dependent thermodynamics of intracellular section separation. Nature 581, 209–214 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Turoverov, Okay. Okay. et al. Stochasticity of organic smooth matter: rising ideas in intrinsically disordered proteins and organic section separation. Developments Biochem. Sci. 44, 716–728 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peeples, W. & Rosen, M. Okay. Mechanistic dissection of elevated enzymatic fee in a phase-separated compartment. Nat. Chem. Biol. 17, 693–702 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brockdorff, N. Native tandem repeat enlargement in Xist RNA as a mannequin for the functionalisation of ncRNA. Noncoding RNA 4, 28 (2018).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Langdon, E. M. et al. mRNA construction determines specificity of a polyQ-driven section separation. Science 360, 922–927 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Spitale, R. C. et al. RNA SHAPE evaluation in dwelling cells. Nat. Chem. Biol. 9, 18–20 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ares, P. et al. Excessive decision atomic pressure microscopy of double-stranded RNA. Nanoscale 8, 11818–11826 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Uroda, T. et al. Conserved pseudoknots in lncRNA MEG3 are important for stimulation of the p53 pathway. Mol. Cell 75, 982–995.e9 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Unfried, J. P. et al. Lengthy noncoding RNA NIHCOLE promotes ligation effectivity of DNA double-strand breaks in hepatocellular carcinoma. Most cancers Res. 81, 4910–4925 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Geiger, F. et al. Liquid–liquid section separation underpins the formation of replication factories in rotaviruses. EMBO J. 40, e107711 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Merdanovic, M. et al. Activation by substoichiometric inhibition. Proc. Natl Acad. Sci. USA 117, 1414–1418 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Golden, R. J. et al. An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature 542, 197–202 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bosson, A. D., Zamudio, J. R. & Sharp, P. A. Endogenous miRNA and goal concentrations decide susceptibility to potential ceRNA competitors. Mol. Cell 56, 347–359 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. & Stoffel, M. Assessing the ceRNA speculation with quantitative measurements of miRNA and goal abundance. Mol. Cell 54, 766–776 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Robert-Finestra, T. et al. SPEN is required for Xist upregulation throughout initiation of X chromosome inactivation. Nat. Commun. 12, 7000 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rodermund, L. et al. Time-resolved structured illumination microscopy reveals key ideas of Xist RNA spreading. Science 372, eabe7500 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maharana, S. et al. RNA buffers the section separation habits of prion-like RNA binding proteins. Science 360, 918–921 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bracha, D. et al. Mapping native and international liquid section habits in dwelling cells utilizing photo-oligomerizable seeds. Cell 175, 1467–1480.e13 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    How Is Half Of Nato

    How Is Half Of Pc

    How Is Msw Course

    How Is It

    Recent Comments