Montag, August 1, 2022
StartMicrobiologyThe results of aqueous extract from watermelon (Citrullus lanatus) peel on the...

The results of aqueous extract from watermelon (Citrullus lanatus) peel on the expansion and physiological traits of Dolichospermum flos-aquae


  • Barrington, D. J. & Ghadouani, A. Software of hydrogen peroxide for the elimination of poisonous cyanobacteria and different phytoplankton from wastewater. Environ. Sci. Technol. 42, 8916–8921. https://doi.org/10.1021/es801717y (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vikrant, Okay. et al. Engineered/designer biochar for the elimination of phosphate in water and wastewater. Sci. Whole Environ. 616–617, 1242–1260. https://doi.org/10.1016/j.scitotenv.2017.10.193 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Merel, S. et al. State of information and considerations on cyanobacterial blooms and cyanotoxins. Environ. Int. 59, 303–327. https://doi.org/10.1016/j.envint.2013.06.013 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Paerl, H. W. & Otten, T. G. Dangerous cyanobacterial blooms: Causes, penalties, and controls. Microb. Ecol. 65, 995–1010. https://doi.org/10.1007/s00248-012-0159-y (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Monchamp, M. E. et al. Homogenization of lake cyanobacterial communities over a century of local weather change and eutrophication. Nat. Ecol. Evol. 2, 317–324. https://doi.org/10.1038/s41559-017-0407-0 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Paerl, H. W. & Fulton, R. S. Ecology of dangerous cyanobacteria. In Ecology of Dangerous Algae (eds Granéli, E. & Turner, J. T.) 95–109 (Springer, 2006).

    Chapter 

    Google Scholar
     

  • Guan, Y., Zhang, M., Yang, Z., Shi, X. & Zhao, X. Intra-annual variation and correlations of useful traits in Microcystis and Dolichospermum in Lake Chaohu. Ecol. Indic. 111, 106052. https://doi.org/10.1016/j.ecolind.2019.106052 (2020).

    Article 

    Google Scholar
     

  • Zhang, M. et al. Spatial and seasonal shifts in bloom-forming cyanobacteria in Lake Chaohu: Patterns and driving elements. Phycol. Res. 64, 44–55. https://doi.org/10.1111/pre.12112 (2016).

    Article 

    Google Scholar
     

  • Krishnamurthy, T., Carmichael, W. W. & Sarver, E. W. Poisonous peptides from freshwater cyanobacteria (blue-green algae) I. Isolation, purification and characterization of peptides from Microcystis aeruginosa and Anabaena flos-aquae. Toxicon 24, 865–873. https://doi.org/10.1016/0041-0101(86)90087-5 (1986).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mahmood, N. A. & Carmichael, W. W. Anatoxin-a(s), an anticholinesterase from the cyanobacterium Anabaena flos-aquae NRC 525–17. Toxicon 25, 1221–1227. https://doi.org/10.1016/0041-0101(87)90140-1 (1987).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li, X., Dreher, T. W. & Li, R. An outline of variety, incidence, genetics and toxin manufacturing of bloom-forming Dolichospermum (Anabaena) species. Dangerous Algae 54, 54–68. https://doi.org/10.1016/j.hal.2015.10.015 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Buratti, F. M. et al. Cyanotoxins: Producing organisms, incidence, toxicity, mechanism of motion and human well being toxicological threat analysis. Arch. Toxicol. 91, 1049–1130. https://doi.org/10.1007/s00204-016-1913-6 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Iredale, R. S., McDonald, A. T. & Adams, D. G. A collection of experiments aimed toward clarifying the mode of motion of barley straw in cyanobacterial progress management. Water Res. 46, 6095–6103. https://doi.org/10.1016/j.watres.2012.08.040 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang, S. H., Zhang, S. Y. & Li, G. Acorus calamus root extracts to manage dangerous cyanobacteria blooms. Ecol. Eng. 94, 95–101. https://doi.org/10.1016/j.ecoleng.2016.05.053 (2016).

    Article 

    Google Scholar
     

  • Mecina, G. F. et al. Impact of flavonoids remoted from Tridax procumbens on the expansion and toxin manufacturing of Microcystis aeruginosa. Aquat. Toxicol. 211, 81–91. https://doi.org/10.1016/j.aquatox.2019.03.011 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yuan, R. et al. The allelopathic results of aqueous extracts from Spartina alterniflora on controlling the Microcystis aeruginosa blooms. Sci. Whole Environ. 712, 13622. https://doi.org/10.1016/j.scitotenv.2019.136332 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Tan, Okay. et al. A overview of allelopathy on microalgae. Microbiology 165, 587–592. https://doi.org/10.1099/mic.0.000776 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mecina, G. F. et al. Response of Microcystis aeruginosa BCCUSP 232 to barley (Hordeum vulgare L.) straw degradation extract and fractions. Sci. Whole. Environ. 599–600, 1837–1847. https://doi.org/10.1016/j.scitotenv.2017.05.156 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhao, W., Zheng, Z., Zhang, J., Roger, S. F. & Luo, X. Allelopathically inhibitory results of eucalyptus extracts on the expansion of Microcystis aeruginosa. Chemosphere 225, 424–433. https://doi.org/10.1016/j.chemosphere.2019.03.070 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bottino, F. et al. Results of macrophyte leachate on Anabaena sp. and Chlamydomonas moewusii progress in freshwater tropical ecosystems. Limnology 19, 171–176. https://doi.org/10.1007/s10201-017-0532-0 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Okay., Yu, M., Xu, P., Zhang, S. & Benoit, G. Physiological and morphological response of Aphanizomenon flos-aquae to watermelon (Citrullus lanatus) peel aqueous extract. Aquat. Toxicol. 225, 105548. https://doi.org/10.1016/j.aquatox.2020.105548 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lichtenthaler, H. Okay. & Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Meals Anal. Chem. 1, F4.3.1-F4.38 (2001).

    Article 

    Google Scholar
     

  • Ozaki, Okay. et al. Electron microscopic examine on lysis of a cyanobacterium Microcystis. J. Well being Sci. 55, 578–585. https://doi.org/10.1248/jhs.55.578 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Staats, N., De Winder, B., Stal, L. J. & Mur, L. R. Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur. J. Phycol. 34, 161–169. https://doi.org/10.1080/09670269910001736212 (1999).

    Article 

    Google Scholar
     

  • Hellebust, J. & Craigie, J. (eds) Handbook of Phycological Strategies. Physiological and Biochemical Strategies (Cambridge College, 1978).


    Google Scholar
     

  • Roháček, Okay. & Barták, M. Strategy of the modulated chlorophyll fluorescence: Fundamental ideas, helpful parameters, and a few functions. Photosynthetica 37, 339–363. https://doi.org/10.1023/A:1007172424619 (1999).

    Article 

    Google Scholar
     

  • Zhang, T. T., He, M., Wu, A. P. & Nie, L. W. Inhibitory results and mechanisms of Hydrilla verticillata (Linn.f.) royle extracts on freshwater algae. Bull. Environ. Contam. Toxicol. 88, 477–481. https://doi.org/10.1007/s00128-011-0500-z (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhao, S., Pan, W. & Ma, C. Stimulation and inhibition results of algae-lytic merchandise from Bacillus cereus pressure L7 on Anabaena flos-aquae. J. Appl. Phycol. 24, 1015–1021. https://doi.org/10.1007/s10811-011-9725-9 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Kaminski, A. et al. Aquatic macrophyte Lemna trisulca (L.) as a pure issue for decreasing anatoxin-a focus within the aquatic setting and biomass of cyanobacterium Anabaena flos-aquae (Lyngb.) de Bréb. Algal Res. 9, 212–217. https://doi.org/10.1016/j.algal.2015.03.014 (2015).

    Article 

    Google Scholar
     

  • Gumbo, J. R., Cloete, T. E., van Zyl, G. J. J. & Sommerville, J. E. M. The viability evaluation of Microcystis aeruginosa cells after co-culturing with Bacillus mycoides B16 utilizing move cytometry. Phys. Chem. Earth. 72–75, 24–33. https://doi.org/10.1016/j.pce.2014.09.004 (2014).

    Article 

    Google Scholar
     

  • Fan, J., Ho, L., Hobson, P. & Brookes, J. Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity. Water Res. 47, 5153–5164. https://doi.org/10.1016/j.watres.2013.05.057 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lu, Z. Research on oxidative stress and programmed cell dying of Microcystis aeruginosa induced by polyphenolic allelochemicals (D). Institute of Hydrobiology, Chinese language Academy of Sciences (2014).

  • Lu, Z. et al. Polyphenolic allelochemical pyrogallic acid induces caspase-3(like)-dependent programmed cell dying within the cyanobacterium Microcystis aeruginosa. Algal Res. 21, 148–155. https://doi.org/10.1016/j.algal.2016.11.007 (2017).

    Article 

    Google Scholar
     

  • Chen, Y. et al. Vitamin C modulates Microcystis aeruginosa dying and toxin launch by induced Fenton response. J. Hazard. Mater. 321, 888–895. https://doi.org/10.1016/j.jhazmat.2016.10.010 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Latifi, A., Ruiz, M. & Zhang, C. C. Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 33, 258–278. https://doi.org/10.1111/j.1574-6976.2008.00134.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shao, J. H., Wu, X. Q. & Li, R. H. Physiological responses of Microcystis aeruginosa PCC7806 to nonanoic acid stress. Environ. Toxicol. 24, 610–617. https://doi.org/10.1002/tox.20462 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hua, Q. et al. Allelopathic impact of the rice straw aqueous extract on the expansion of Microcystis aeruginosa. Ecotox. Environ. Protected. 148, 953–959. https://doi.org/10.1016/j.ecoenv.2017.11.049 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Chen, L., Wang, Y., Shi, L., Zhao, J. & Wang, W. Identification of allelochemicals from pomegranate peel and their results on Microcystis aeruginosa progress. Environ. Sci. Pollut. Res. 26, 22389–22399. https://doi.org/10.1007/s11356-019-05507-1 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, S. H., Xu, P. Y. & Chang, J. J. Physiological responses of Aphanizomenon flos-aquae below the stress of Sagittaria sagittifolia extract. Bull. Environ. Contam. Toxicol. 97, 870–875. https://doi.org/10.1007/s00128-016-1948-7 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Progress inhibition and oxidative injury of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers. J. Environ. Sci. 43, 40–47. https://doi.org/10.1016/j.jes.2015.08.020 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Shao, J. et al. Inhibitory results of sanguinarine towards the cyanobacterium Microcystis aeruginosa NIES-843 and doable mechanisms of motion. Aquat. Toxicol. 142–143, 257–263. https://doi.org/10.1016/j.aquatox.2013.08.019 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Apel, Okay. & Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and sign transduction. Annu. Rev. Plant. Biol. 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang, S. & Benoit, G. Comparative physiological tolerance of unicellular and colonial Microcystis aeruginosa to extract from Acorus calamus rhizome. Aquat. Toxicol. 215, 105271. https://doi.org/10.1016/j.aquatox.2019.105271 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Derks, A., Schaven, Okay. & Bruce, D. Numerous mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to speedy environmental change. BBA-Bioenergetics 1847, 468–485. https://doi.org/10.1016/j.bbabio.2015.02.008 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jiang, H. & Qiu, B. Photosynthetic adaptation of a bloom-forming cyanobacterium Microcystis aeruginosa (cyanophyceae) to extended uv-b publicity. J. Phycol. 41, 983–992. https://doi.org/10.1111/j.1529-8817.2005.00126.x (2005).

    Article 

    Google Scholar
     

  • Azizullah, A., Richter, P. & Häder, D. P. Photosynthesis and photosynthetic pigments within the flagellate Euglena gracilis: As delicate endpoints for toxicity analysis of liquid detergents. J. Photochem. Photobiol. B Biol. 133, 18–26. https://doi.org/10.1016/j.jphotobiol.2014.02.011 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Singh, D. P., Khattar, J. I. S., Gupta, M. & Kaur, G. Analysis of toxicological influence of cartap hydrochloride on some physiological actions of a non-heterocystous cyanobacterium Leptolyngbya foveolarum. Pestic. Biochem. Phys. 110, 63–70. https://doi.org/10.1016/j.pestbp.2014.03.002 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Movasaghi, Z., Rehman, S. & Rehman, I. U. Raman spectroscopy of organic tissues. Appl. Spectrosc. Rev. 42, 493–541. https://doi.org/10.1080/05704920701551530 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Li, Okay. et al. In vivo kinetics of lipids and astaxanthin evolution in Haematococcus pluvialis mutant below 15% CO2 utilizing Raman microspectroscopy. Bioresource Technol. 244, 1439–1444. https://doi.org/10.1016/j.biortech.2017.04.116 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Beutner, S. et al. Quantitative evaluation of antioxidant properties of pure colorants and phytochemicals: Carotenoids, flavonoids, phenols and indigoids. The function of beta-carotene in antioxidant features. J. Sci. Meals. Agric. 81, 559–568. https://doi.org/10.1002/jsfa.849 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Kelman, D., Ben-Amotz, A. & Berman-Frank, I. Carotenoids present the most important antioxidant defence within the globally vital N2-fixing marine cyanobacterium Trichodesmiumem. Environ. Microbiol. 11, 1897–1908. https://doi.org/10.1111/j.1462-2920.2009.01913.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhou, T. et al. Progress suppression and apoptosis-like cell dying in Microcystis aeruginosa by H2O2: A brand new perception into extracellular and intracellular injury pathways. Chemosphere 211, 1098–1108. https://doi.org/10.1016/j.chemosphere.2018.08.042 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Schreiber, U., Quayle, P., Schmidt, S., Escher, B. I. & Mueller, J. F. Methodology and analysis of a extremely delicate algae toxicity check based mostly on multiwell chlorophyll fluorescence imaging. Biosens. Bioelectron. 22, 2554–2563. https://doi.org/10.1016/j.bios.2006.10.018 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kumar, Okay. S. et al. Algal photosynthetic responses to poisonous metals and herbicides assessed by chlorophyll a fluorescence. Ecotox. Environ. Protected. 104, 51–71. https://doi.org/10.1016/j.ecoenv.2014.01.042 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Maxwell, Okay. & Johnson, G. N. Chlorophyll fluorescence: A sensible information. J Exp Bot 51, 659–668. https://doi.org/10.1093/jxb/51.345.659 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lürling, M. & Roessink, I. On the way in which to cyanobacterial blooms: Influence of the herbicide metribuzin on the competitors between a inexperienced alga (Scenedesmus) and a cyanobacterium (Microcystis). Chemosphere 65, 618–626. https://doi.org/10.1016/j.chemosphere.2006.01.073 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhu, J. Y., Liu, B. Y., Wang, J., Gao, Y. N. & Wu, Z. B. Examine on the mechanism of allelopathic affect on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquat. Toxicol. 98, 196–203. https://doi.org/10.1016/j.aquatox.2010.02.011 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wan, J., Guo, P., Peng, X. & Wen, Okay. Impact of erythromycin publicity on the expansion, antioxidant system and photosynthesis of Microcystis flos-aquae. J. Hazard. Mater. 283, 778–786. https://doi.org/10.1016/j.jhazmat.2014.10.026 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang, R. et al. Evaluating the results of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and move cytometry. Chemosphere 147, 264–271. https://doi.org/10.1016/j.chemosphere.2015.12.109 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lengthy, M. et al. Allelochemicals from Alexandrium minutum induce speedy inhibition of metabolism and modify the membranes from Chaetoceros muelleri. Algal Res. 35, 508–518. https://doi.org/10.1016/j.algal.2018.09.023 (2018).

    Article 

    Google Scholar
     

  • Cosgrove, J. & Borowitzka, M. A. Chloreophyll fluorescence terminology: An introduction. In Chlorophyll a Fluorescence in Aquatic Sciences: Strategies and Functions, Developments in Utilized Phycology Vol. 4 (eds Sugget, D. J. et al.) 1–18 (Springer, 2010).


    Google Scholar
     

  • Kumar, Okay. S. & Han, T. Physiological response of Lemna species toherbicides and its possible use in toxicity testing. Toxicol. Environ. Well being Sci. 2, 39–49. https://doi.org/10.1007/BF03216512 (2010).

    Article 

    Google Scholar
     

  • Ricart, M. et al. Main and sophisticated stressors in polluted mediterranean rivers: Pesticide results on organic communities. J. Hydrol. 383, 52–61. https://doi.org/10.1016/j.jhydrol.2009.08.014 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Deng, C., Pan, X. & Zhang, D. Affect of of loxacin on photosystems I and II actions of Microcystis aeruginosa and the potential function of cyclic electron move. J. Biosci. Bioeng. 119, 159–164. https://doi.org/10.1016/j.jbiosc.2014.07.014 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pereira, S. et al. Complexity of cyanobacterial exopolysaccharides: Composition, buildings, inducing elements and putative genes concerned of their biosynthesis and meeting. FEMS Microbiol. Rev. 33, 917–941. https://doi.org/10.1111/j.1574-6976.2009.00183.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gao, L. et al. Extracellular polymeric substances buffer towards the biocidal impact of H2O2 on the bloom-forming cyanobacterium Microcystis aeruginosa. Water Res. 69, 51–58. https://doi.org/10.1016/j.watres.2014.10.060 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Ameliorating results of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots. Aquat. Toxicol. 126, 214–223. https://doi.org/10.1016/j.aquatox.2012.11.012 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Henriques, I. D. S. & Love, N. G. The function of extracellular polymeric substances within the toxicity response of activated sludge micro organism to chemical toxins. Water Res. 41, 4177–4185. https://doi.org/10.1016/j.watres.2007.05.001 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zheng, S. M. et al. Position of extracellular polymeric substances on the habits and toxicity of silver nanoparticles and ions to inexperienced algae Chlorella vulgaris. Sci. Whole Environ. 660, 1182–1190. https://doi.org/10.1016/j.scitotenv.2019.01.067 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Did Events Flip

    Did Half Of Speech

    Did Half 8 Of Jojo Finish

    Recent Comments