Chandraker, S. Ok., Ghosh, M. Ok., Lal, M. & Shukla, R. A overview on plant-mediated synthesis of silver nanoparticles, their characterization and purposes. Nano Categorical 2(2), 022008. https://doi.org/10.1088/2632-959X/ac0355 (2021).
Khan, I., Saeed, Ok. & Khan, I. Nanoparticles: Properties, purposes and toxicities. Arab. J. Chem. 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011 (2019).
Patra, J. Ok. et al. Nano primarily based drug supply programs: latest developments and future prospects. J. Nanobiotechnol. 16, 71. https://doi.org/10.1186/s12951-018-0392-8 (2018).
Nasrollahzadeh, M. et al. Valorisation of fruits, their juices and residues into worthwhile (nano) supplies for purposes in chemical catalysis and surroundings. Chem. Rec. 20, 1338–1393. https://doi.org/10.1002/tcr.202000078 (2020).
McQuillan, J. S., Groenaga Infante, H., Stokes, E. & Shaw, A. M. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 6(8), 857–866. https://doi.org/10.3109/17435390.2011.626532 (2012).
Mijnendonckx, Ok. et al. Antimicrobial silver: Makes use of, toxicity and potential for resistance. Biometals 26(4), 609–621. https://doi.org/10.1007/s10534-013-9645-z (2013).
Pareek, V., Gupta, R. & Panwar, J. Do physico-chemical properties of silver nanoparticles resolve their interplay with organic media and bactericidal motion? A overview. Mater. Sci. Eng. C 90, 739–749. https://doi.org/10.1016/j.msec.2018.04.093 (2018).
Wong, Ok. Ok. & Liu, X. Silver nanoparticles-the actual “silver bullet” in medical medication?. Med. Chem. Commun. 1, 125–131. https://doi.org/10.1039/C0MD00069H (2010).
Burdușel, A. C. et al. Biomedical purposes of silver nanoparticles: An up-to-date overview. Nanomaterials 8(9), 1. https://doi.org/10.3390/nano8090681 (2018).
Thakkar, Ok. N., Mhatre, S. S. & Parikh, R. Y. Organic synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 6, 257–262. https://doi.org/10.1016/j.nano.2009.07.002 (2010).
Kaur, P. Biosynthesis of nanoparticles utilizing eco-friendly factories and their function in plant pathogenicity: A overview. Biotechnol. Res. Innov. 2, 63–73. https://doi.org/10.1016/j.biori.2018.09.003 (2018).
Ahmad, T. et al. M. Biosynthesis, structural characterization and antimicrobial exercise of gold and silver nanoparticles. Colloids Surfaces B: Biointerfaces 107, 227–234. https://doi.org/10.1016/j.colsurfb.2013.02.004 (2013).
Wani, I. A. et al. Structural characterization and antimicrobial properties of silver nanoparticles ready by inverse microemulsion technique. Colloids Surf. B 101, 243–250. https://doi.org/10.1016/j.colsurfb.2012.07.001 (2013).
Yokoyama, Ok. & Welchons, D. R. The conjugation of amyloid beta protein on the gold colloidal nanoparticles’ surfaces. Nanotechnology 18, 105101. https://doi.org/10.1088/0957-4484/18/10/105101 (2007).
Monteiro, D. R. et al. Silver nanoparticles: affect of stabilizing agent and diameter on antifungal exercise in opposition to Candida albicans and Candida glabrata biofilms. Lett. Appl. Microbiol. 54, 383–391. https://doi.org/10.1111/j.1472-765X.2012.03219.x (2012).
Bendale, Y., Bendale, V. & Paul, S. Analysis of cytotoxic exercise of platinum nanoparticles in opposition to regular and most cancers cells and its anticancer potential by means of induction of apoptosis. Integr. Med. Res. 6, 141–148. https://doi.org/10.1016/j.imr.2017.01.006 (2017).
Sisubalan, N. et al. ROS-mediated cytotoxic exercise of ZnO and CeO 2 nanoparticles synthesized utilizing the R. cordifolia L. leaf extract on MG-63 human osteosarcoma cell strains. Environ. Sci. Pollut. Res. 25, 10482–10492. https://doi.org/10.1007/s11356-017-0003-5 (2018).
Natarajan, S. et al. ISSR characterization and quantification of purpurin and Alizarin in R. cordifolia L. populations from India. Biochem. Genet. 57, 56–72. https://doi.org/10.1007/s10528-018-9875-4 (2019).
Mishchenko, N. P. et al. Chemical composition and pharmacological exercise of anthraquinones from Rubia cordifolia cell tradition. Pharm. Chem. J. 41, 605–609. https://doi.org/10.1007/s11094-008-0021-1 (2007).
Bhatt, P. & Kushwah, A. S. Rubia cordifolia overview: A brand new method to deal with cardiac issues. Int. J. Drug Dev. & Res. 5, 47–54 (2013).
Zheng, Z. et al. UPLC-QTOF-MS identification of the chemical constituents in rat plasma and urine after oral administration of R. cordifolia L. extract. Molecules 22, 1327. https://doi.org/10.3390/molecules22081327 (2017).
Chandraker, S. Ok. et al. Inexperienced synthesis of copper nanoparticles utilizing leaf extract of Ageratum houstonianum Mill. and examine of their photocatalytic and antibacterial actions. Nano Categorical. https://doi.org/10.1088/2632-959X/ab8e99 (2020).
Ukwubile, C. A., Oise, I. E. & Nyiayem, J. T. Preliminary phytochemical screening and antibacterial exercise of Thaumatococcus daniellii (Benn) Benth (Marantaceae) leaf extract. J. Bacteriol. Mycol. 4(2), 53–57 (2017).
Shukla, R., Singh, P., Prakash, B. & Dubey, N. Ok. Antifungal, aflatoxin inhibition and antioxidant exercise of Callistemon lanceolatus (Sm) Candy important oil and its main element 1, 8-cineole in opposition to fungal isolates from chickpea seeds. Meals Management 25(1), 27–33 (2012).
Chandraker, S. Ok., Lal, M. & Shukla, R. DNA-binding, antioxidant, H2O2 sensing and photocatalytic properties of biogenic silver nanoparticles utilizing Ageratum conyzoides L. leaf extract. RSC Adv. 9, 23408–23417. https://doi.org/10.1039/C9RA03590G (2019).
Chandrashekar, B. S. et al. Characterization of Rubia cordifolia L root extract and its analysis of cardioprotective impact in Wistar rat mannequin. Indian J. Pharmacol. 50(12), 1. https://doi.org/10.4103/ijp.IJP_418_17 (2018).
Ahmad, T. Reviewing the tannic acid mediated synthesis of metallic nanoparticles. J. Nanotechnol. https://doi.org/10.1155/2014/954206 (2014).
Choi, Y. et al. Platycodon saponins from Platycodi radix (Platycodongrandiflorum) for the inexperienced synthesis of gold and silver nanoparticles. Nanoscale Res. Lett. 13, 1–10. https://doi.org/10.1186/s11671-018-2436-2 (2018).
Mishchenko, N. P. et al. Chemical composition and pharmacological exercise of anthraquinones from Rubia cordifolia cell tradition. Pharm. Chem. J. 41(11), 605–609. https://doi.org/10.1007/s11094-008-0021-1 (2007).
Gao, M. et al. Simultaneous willpower of purpurin, munjistin and mollugin in rat plasma by extremely excessive efficiency liquid chromatography-tandem mass spectrometry: Software to a pharmacokinetic examine after oral administration of Rubia cordifolia L extract. Molecules 21(6), 717. https://doi.org/10.3390/molecules21060717 (2016).
Ali, A., Aslam, M. & Chaudhary, S. S. A overview on pharmacognostic and therapeutic makes use of of Rubia cordifolia. J. Drug Deliv. Ther. 10(6), 195–202 (2020).
Alomar, T. S. et al. An eco-friendly plant-mediated synthesis of silver nanoparticles: Characterization, pharmaceutical and biomedical purposes. Mater. Chem. Phys. 249, 123007. https://doi.org/10.1016/j.matchemphys.2020.123007 (2020).
Zamiri, R. et al. Preparation of silver nanoparticles in virgin coconut oil utilizing laser ablation. Int. J. Nanomedicine 6(71), 71–75. https://doi.org/10.2147/IJN.S14005 (2011).
Ashraf, J. M. et al. Inexperienced synthesis of silver nanoparticles and characterization of their inhibitory results on AGEs formation utilizing biophysical methods. Sci. Rep. 6, 20414. https://doi.org/10.1038/srep20414 (2016).
Chandraker, S. Ok., Lal, M., Kumar, A. & Shukla, R. Justicia adhatoda L. mediated inexperienced synthesis of silver nanoparticles and evaluation of their antioxidant, hydrogen peroxide sensing and optical properties. Mater. Technol. 1, 1–11. https://doi.org/10.1080/10667857.2021.1949525 (2021).
Chandraker, S. Ok. et al. Colorimetric sensing of Fe3+ and Hg2+ and photocatalytic exercise of inexperienced synthesized silver nanoparticles from the leaf extract of Sonchus arvensis L. New J. Chem. 43, 18175–18183. https://doi.org/10.1039/C9NJ01338E (2019).
Das, G., Patra, J. Ok. & Shin, H. S. Biosynthesis, and potential impact of fern mediated biocompatible silver nanoparticles by cytotoxicity, antidiabetic, antioxidant and antibacterial, research. Mater. Sci. Eng. C 114, 111011. https://doi.org/10.1016/j.msec.2020.111011 (2020).
Tripathi, D., Modi, A., Narayan, G. & Rai, S. P. Inexperienced and value efficient synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater. Sci. Eng. C 100, 152–164. https://doi.org/10.1016/j.msec.2019.02.113 (2019).
Singh, D. et al. Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. remoted from Curcuma longa (turmeric) and software research in opposition to MDR E. coli and S. aureus. Bioinorg. Chem. Appl. 1, 1. https://doi.org/10.1155/2014/408021 (2014).
Jaffri, S. B. & Ahmad, Ok. S. Augmented photocatalytic, antibacterial and antifungal exercise of prunosynthetic silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 46, 127–137. https://doi.org/10.1080/21691401.2017.1414826 (2018).
Vanaja, M. et al. Phytosynthesis of silver nanoparticles by Cissus quadrangularis: affect of physicochemical elements. J. Nanostructure Chem. 3(17), 1. https://doi.org/10.1186/2193-8865-3-17 (2013).
Qian, Y. et al. Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their exercise in opposition to pathogenic fungi. Bioprocess. Biosyst. Eng. 36(11), 613–1619. https://doi.org/10.1007/s00449-013-0937-z (2013).
Handayani, W., Ningrum, A. S. & Imawan, C. The function of pH in synthesis silver nanoparticles utilizing pometia pinnata (matoa) leaves extract as bioreductor. J. Phys. Conf. Ser. https://doi.org/10.1088/1742-6596/1428/1/012021 (2020).
Sintubin, L. et al. Lactic acid micro organism as decreasing and capping agent for the quick and environment friendly manufacturing of silver nanoparticles. Appl. Microbiol. Biotechnol. 84(4), 741–749. https://doi.org/10.1007/s00253-009-2032-6 (2009).
Priya, R. S., Geetha, D. & Ramesh, P. S. Antioxidant exercise of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs–A comparative examine. Ecotoxicol. Environ. Saf. 134, 308–318. https://doi.org/10.1016/j.ecoenv.2015.07.037 (2016).
Ndikau, M., Noah, N. M., Andala, D. M. & Masika, E. Inexperienced synthesis and characterization of silver nanoparticles utilizing Citrullus lanatus fruit rind extract. Int. J. Environ. Anal. Chem. https://doi.org/10.1155/2017/8108504 (2017).
Elumalai, D., Hemavathi, M., Deepaa, C. V. & Kaleena, P. Ok. Analysis of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal exercise in opposition to malaria, dengue and filariasis vectors. Parasite Epidemiol. Management. 2, 15–26. https://doi.org/10.1016/j.parepi.2017.09.001 (2017).
Kokila, T., Ramesh, P. S. & Geetha, D. Biosynthesis of AgNPs utilizing Carica Papaya peel extract and analysis of its antioxidant and antimicrobial actions. Ecotoxicol. Environ. Saf. 134, 467–473. https://doi.org/10.1016/j.ecoenv.2016.03.021 (2016).
Chandraker, S. Ok. et al. Cytotoxic, antimitotic, DNA binding, photocatalytic, H2O2 sensing, and antioxidant properties of biofabricated silver nanoparticles utilizing leaf extract of Bryophyllum pinnatum (Lam.) Oken. Entrance. Mol. Biosci. 465, 1. https://doi.org/10.3389/fmolb.2020.593040 (2021).
Nayak, D. et al. Biologically synthesised silver nanoparticles from three numerous household of plant extracts and their anticancer exercise in opposition to epidermoid A431 carcinoma. J. Colloid Interface Sci. 457, 329–338. https://doi.org/10.1016/j.jcis.2015.07.012 (2015).
Netala, V. R. et al. Biogenesis of silver nanoparticles utilizing leaf extract of Indigofera hirsuta L. and their potential biomedical purposes (3-in-1 system). Artif Cells Nanomed Biotechnol. 46(1), 1138–1148. https://doi.org/10.1080/21691401.2018.1446967 (2018).
Patel, P. R. et al. In-vitro anticancer exercise of Rubia cordifolia in opposition to Hela and Hep-2 cell strains. Phytomedicine 2, 44–46 (2010).
Adwankar, M. Ok. & Chitnis, M. P. In vivo anti-Most cancers exercise of RC-18. Chemotherapy 28, 291–293. https://doi.org/10.1159/000238092 (1982).
Tripathi, Y. B. & Shukla, S. D. Rubia cordifolia extract inhibits cell proliferation in A-431 cells. Phytotherapy Analysis: Phytother. Res. 12(6), 454–456. https://doi.org/10.1002/(SICI)1099-1573(199809)12:6percent3c454::AID-PTR331percent3e3.0.CO;2-N (1998).
Adwankar, M. Ok., Chitnis, M. P., Khandalekar, D. D. & Bhadsavale, C. G. Anti-cancer exercise of the extracts of Rubia cordifolia Linn. (NSC b668893). Indian J. Exp. Biol. 18(102), 1 (1980).
Topală, T., Bodoki, A., Oprean, L. & Oprean, R. Experimental methods employed within the examine of metallic complexes-DNA–interactions. Exp. Tech. 62(6), 1 (2014).
Rahban, M., Divsalar, A., Saboury, A. A. & Golestani, A. Nanotoxicity and spectroscopy research of silver nanoparticle: calf thymus DNA and K562 as targets. J. Phys. Chem. C 114, 5798–5803. https://doi.org/10.1021/jp910656g (2010).
Pramanik, S. et al. Unraveling the interplay of silver nanoparticles with mammalian and bacterial DNA. J. Phys. Chem. 120(24), 5313–5324. https://doi.org/10.1021/acs.jpcb.6b01586 (2016).
Ribeiro, A. P. C. et al. Analysis of cell toxicity and DNA and protein binding of inexperienced synthesized silver nanoparticles. Biomed. Pharmacother. 101, 137–144. https://doi.org/10.1016/j.biopha.2018.02.069 (2018).
Bocate, Ok. P. et al. Antifungal exercise of silver nanoparticles and simvastatin in opposition to toxigenic species of Aspergillus. Int. J. Meals Microbiol. 291, 79–86. https://doi.org/10.1016/j.ijfoodmicro.2018.11.012 (2019).
Ravi, L. & Kannabiran, Ok. Antifungal potential of inexperienced synthesized silver nanoparticles (AgNPS) from the stem bark extract of Kigelia pinnata. Res. J. Pharm. Technol. 14(4), 1842–1846 (2021).
Sowmiya, Ok. et al. Inexperienced synthesis of silver nanoparticles utilizing aqueous rhizome extract of Corallocarpus Epigaeus for biomedical purposes. Appl. Sci. Converg. Technol. 30(2), 54–61. https://doi.org/10.5757/ASCT.2021.30.2.54 (2021).
Kumar, D., Arora, S. & Danish, M. Plant primarily based synthesis of silver nanoparticles from Ougeinia oojeinensis leaves extract and their membrane stabilizing, antioxidant and antimicrobial actions. Mater. As we speak: Proc. 17, 313–320. https://doi.org/10.1016/j.matpr.2019.06.435 (2019).
Bakri, M. M., El-Naggar, M. A., Helmy, E. A., Ashoor, M. S. & Ghany, A. Efficacy of Juniperus procera constituents with silver nanoparticles in opposition to Aspergillus fumigatus and Fusarium chlamydosporum. BioNanoScience 10(1), 62–72 (2020).
Khorrami, S., Zarepour, A. & Zarrabi, A. Inexperienced synthesis of silver nanoparticles at low temperature in a quick tempo with distinctive DPPH radical scavenging and selective cytotoxicity in opposition to MCF-7 and BT-20 tumor cell strains. Biotechnol. Rep. 24, e00393. https://doi.org/10.1016/j.btre.2019.e00393 (2019).
Salari, S., Bahabadi, S. E., Samzadeh-Kermani, A. & Yosefzaei, F. In-vitro analysis of antioxidant and antibacterial potential of inexperienced synthesized silver nanoparticles utilizing Prosopis farcta fruit extract. Iran. J. Pharm. Res. 18(430), 1 (2019).
Hemlata Meena, P. R., Singh, A. P. & Tejavath, Ok. Ok. Biosynthesis of silver nanoparticles utilizing Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative exercise in opposition to most cancers cell strains. ACS Omega 5, 5520–5528 (2020).
Vorobyova, V., Vasyliev, G. & Skiba, M. Eco-friendly, “inexperienced” synthesis of silver nanoparticles with the black currant pomace extract and its antibacterial, electrochemical, and antioxidant exercise. Appl. Nanosci. 10, 4523–4534. https://doi.org/10.1007/s13204-020-01369-z (2020).
Rasheed, T., Bilal, M., Iqbal, H. M. & Li, C. Inexperienced biosynthesis of silver nanoparticles utilizing leaves extract of Artemisia vulgaris and their potential biomedical purposes. Colloids Surf. B 158, 408–415. https://doi.org/10.1016/j.colsurfb.2017.07.020 (2017).
Sowinska, M. et al. Molecular Antioxidant Properties and In Vitro Cell Toxicity of the p-Aminobenzoic Acid (PABA) Functionalized Peptide Dendrimers. Biomolecules 9(89), 1. https://doi.org/10.3390/biom9030089 (2019).