Samstag, Juli 30, 2022
StartBiotechnologyTherapeutic potential of biogenic and optimized silver nanoparticles utilizing Rubia cordifolia L....

Therapeutic potential of biogenic and optimized silver nanoparticles utilizing Rubia cordifolia L. leaf extract


  • Chandraker, S. Ok., Ghosh, M. Ok., Lal, M. & Shukla, R. A overview on plant-mediated synthesis of silver nanoparticles, their characterization and purposes. Nano Categorical 2(2), 022008. https://doi.org/10.1088/2632-959X/ac0355 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Khan, I., Saeed, Ok. & Khan, I. Nanoparticles: Properties, purposes and toxicities. Arab. J. Chem. 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Patra, J. Ok. et al. Nano primarily based drug supply programs: latest developments and future prospects. J. Nanobiotechnol. 16, 71. https://doi.org/10.1186/s12951-018-0392-8 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Nasrollahzadeh, M. et al. Valorisation of fruits, their juices and residues into worthwhile (nano) supplies for purposes in chemical catalysis and surroundings. Chem. Rec. 20, 1338–1393. https://doi.org/10.1002/tcr.202000078 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • McQuillan, J. S., Groenaga Infante, H., Stokes, E. & Shaw, A. M. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 6(8), 857–866. https://doi.org/10.3109/17435390.2011.626532 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mijnendonckx, Ok. et al. Antimicrobial silver: Makes use of, toxicity and potential for resistance. Biometals 26(4), 609–621. https://doi.org/10.1007/s10534-013-9645-z (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pareek, V., Gupta, R. & Panwar, J. Do physico-chemical properties of silver nanoparticles resolve their interplay with organic media and bactericidal motion? A overview. Mater. Sci. Eng. C 90, 739–749. https://doi.org/10.1016/j.msec.2018.04.093 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wong, Ok. Ok. & Liu, X. Silver nanoparticles-the actual “silver bullet” in medical medication?. Med. Chem. Commun. 1, 125–131. https://doi.org/10.1039/C0MD00069H (2010).

    CAS 
    Article 

    Google Scholar
     

  • Burdușel, A. C. et al. Biomedical purposes of silver nanoparticles: An up-to-date overview. Nanomaterials 8(9), 1. https://doi.org/10.3390/nano8090681 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Thakkar, Ok. N., Mhatre, S. S. & Parikh, R. Y. Organic synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 6, 257–262. https://doi.org/10.1016/j.nano.2009.07.002 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Kaur, P. Biosynthesis of nanoparticles utilizing eco-friendly factories and their function in plant pathogenicity: A overview. Biotechnol. Res. Innov. 2, 63–73. https://doi.org/10.1016/j.biori.2018.09.003 (2018).

    Article 

    Google Scholar
     

  • Ahmad, T. et al. M. Biosynthesis, structural characterization and antimicrobial exercise of gold and silver nanoparticles. Colloids Surfaces B: Biointerfaces 107, 227–234. https://doi.org/10.1016/j.colsurfb.2013.02.004 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wani, I. A. et al. Structural characterization and antimicrobial properties of silver nanoparticles ready by inverse microemulsion technique. Colloids Surf. B 101, 243–250. https://doi.org/10.1016/j.colsurfb.2012.07.001 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Yokoyama, Ok. & Welchons, D. R. The conjugation of amyloid beta protein on the gold colloidal nanoparticles’ surfaces. Nanotechnology 18, 105101. https://doi.org/10.1088/0957-4484/18/10/105101 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Monteiro, D. R. et al. Silver nanoparticles: affect of stabilizing agent and diameter on antifungal exercise in opposition to Candida albicans and Candida glabrata biofilms. Lett. Appl. Microbiol. 54, 383–391. https://doi.org/10.1111/j.1472-765X.2012.03219.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bendale, Y., Bendale, V. & Paul, S. Analysis of cytotoxic exercise of platinum nanoparticles in opposition to regular and most cancers cells and its anticancer potential by means of induction of apoptosis. Integr. Med. Res. 6, 141–148. https://doi.org/10.1016/j.imr.2017.01.006 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sisubalan, N. et al. ROS-mediated cytotoxic exercise of ZnO and CeO 2 nanoparticles synthesized utilizing the R. cordifolia L. leaf extract on MG-63 human osteosarcoma cell strains. Environ. Sci. Pollut. Res. 25, 10482–10492. https://doi.org/10.1007/s11356-017-0003-5 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Natarajan, S. et al. ISSR characterization and quantification of purpurin and Alizarin in R. cordifolia L. populations from India. Biochem. Genet. 57, 56–72. https://doi.org/10.1007/s10528-018-9875-4 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mishchenko, N. P. et al. Chemical composition and pharmacological exercise of anthraquinones from Rubia cordifolia cell tradition. Pharm. Chem. J. 41, 605–609. https://doi.org/10.1007/s11094-008-0021-1 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Bhatt, P. & Kushwah, A. S. Rubia cordifolia overview: A brand new method to deal with cardiac issues. Int. J. Drug Dev. & Res. 5, 47–54 (2013).


    Google Scholar
     

  • Zheng, Z. et al. UPLC-QTOF-MS identification of the chemical constituents in rat plasma and urine after oral administration of R. cordifolia L. extract. Molecules 22, 1327. https://doi.org/10.3390/molecules22081327 (2017).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Chandraker, S. Ok. et al. Inexperienced synthesis of copper nanoparticles utilizing leaf extract of Ageratum houstonianum Mill. and examine of their photocatalytic and antibacterial actions. Nano Categorical. https://doi.org/10.1088/2632-959X/ab8e99 (2020).

    Article 

    Google Scholar
     

  • Ukwubile, C. A., Oise, I. E. & Nyiayem, J. T. Preliminary phytochemical screening and antibacterial exercise of Thaumatococcus daniellii (Benn) Benth (Marantaceae) leaf extract. J. Bacteriol. Mycol. 4(2), 53–57 (2017).


    Google Scholar
     

  • Shukla, R., Singh, P., Prakash, B. & Dubey, N. Ok. Antifungal, aflatoxin inhibition and antioxidant exercise of Callistemon lanceolatus (Sm) Candy important oil and its main element 1, 8-cineole in opposition to fungal isolates from chickpea seeds. Meals Management 25(1), 27–33 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Chandraker, S. Ok., Lal, M. & Shukla, R. DNA-binding, antioxidant, H2O2 sensing and photocatalytic properties of biogenic silver nanoparticles utilizing Ageratum conyzoides L. leaf extract. RSC Adv. 9, 23408–23417. https://doi.org/10.1039/C9RA03590G (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandrashekar, B. S. et al. Characterization of Rubia cordifolia L root extract and its analysis of cardioprotective impact in Wistar rat mannequin. Indian J. Pharmacol. 50(12), 1. https://doi.org/10.4103/ijp.IJP_418_17 (2018).

    Article 

    Google Scholar
     

  • Ahmad, T. Reviewing the tannic acid mediated synthesis of metallic nanoparticles. J. Nanotechnol. https://doi.org/10.1155/2014/954206 (2014).

    Article 

    Google Scholar
     

  • Choi, Y. et al. Platycodon saponins from Platycodi radix (Platycodongrandiflorum) for the inexperienced synthesis of gold and silver nanoparticles. Nanoscale Res. Lett. 13, 1–10. https://doi.org/10.1186/s11671-018-2436-2 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Mishchenko, N. P. et al. Chemical composition and pharmacological exercise of anthraquinones from Rubia cordifolia cell tradition. Pharm. Chem. J. 41(11), 605–609. https://doi.org/10.1007/s11094-008-0021-1 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Gao, M. et al. Simultaneous willpower of purpurin, munjistin and mollugin in rat plasma by extremely excessive efficiency liquid chromatography-tandem mass spectrometry: Software to a pharmacokinetic examine after oral administration of Rubia cordifolia L extract. Molecules 21(6), 717. https://doi.org/10.3390/molecules21060717 (2016).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Ali, A., Aslam, M. & Chaudhary, S. S. A overview on pharmacognostic and therapeutic makes use of of Rubia cordifolia. J. Drug Deliv. Ther. 10(6), 195–202 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Alomar, T. S. et al. An eco-friendly plant-mediated synthesis of silver nanoparticles: Characterization, pharmaceutical and biomedical purposes. Mater. Chem. Phys. 249, 123007. https://doi.org/10.1016/j.matchemphys.2020.123007 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zamiri, R. et al. Preparation of silver nanoparticles in virgin coconut oil utilizing laser ablation. Int. J. Nanomedicine 6(71), 71–75. https://doi.org/10.2147/IJN.S14005 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashraf, J. M. et al. Inexperienced synthesis of silver nanoparticles and characterization of their inhibitory results on AGEs formation utilizing biophysical methods. Sci. Rep. 6, 20414. https://doi.org/10.1038/srep20414 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandraker, S. Ok., Lal, M., Kumar, A. & Shukla, R. Justicia adhatoda L. mediated inexperienced synthesis of silver nanoparticles and evaluation of their antioxidant, hydrogen peroxide sensing and optical properties. Mater. Technol. 1, 1–11. https://doi.org/10.1080/10667857.2021.1949525 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Chandraker, S. Ok. et al. Colorimetric sensing of Fe3+ and Hg2+ and photocatalytic exercise of inexperienced synthesized silver nanoparticles from the leaf extract of Sonchus arvensis L. New J. Chem. 43, 18175–18183. https://doi.org/10.1039/C9NJ01338E (2019).

    CAS 
    Article 

    Google Scholar
     

  • Das, G., Patra, J. Ok. & Shin, H. S. Biosynthesis, and potential impact of fern mediated biocompatible silver nanoparticles by cytotoxicity, antidiabetic, antioxidant and antibacterial, research. Mater. Sci. Eng. C 114, 111011. https://doi.org/10.1016/j.msec.2020.111011 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Tripathi, D., Modi, A., Narayan, G. & Rai, S. P. Inexperienced and value efficient synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater. Sci. Eng. C 100, 152–164. https://doi.org/10.1016/j.msec.2019.02.113 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Singh, D. et al. Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. remoted from Curcuma longa (turmeric) and software research in opposition to MDR E. coli and S. aureus. Bioinorg. Chem. Appl. 1, 1. https://doi.org/10.1155/2014/408021 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Jaffri, S. B. & Ahmad, Ok. S. Augmented photocatalytic, antibacterial and antifungal exercise of prunosynthetic silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 46, 127–137. https://doi.org/10.1080/21691401.2017.1414826 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vanaja, M. et al. Phytosynthesis of silver nanoparticles by Cissus quadrangularis: affect of physicochemical elements. J. Nanostructure Chem. 3(17), 1. https://doi.org/10.1186/2193-8865-3-17 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Qian, Y. et al. Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their exercise in opposition to pathogenic fungi. Bioprocess. Biosyst. Eng. 36(11), 613–1619. https://doi.org/10.1007/s00449-013-0937-z (2013).

    CAS 
    Article 

    Google Scholar
     

  • Handayani, W., Ningrum, A. S. & Imawan, C. The function of pH in synthesis silver nanoparticles utilizing pometia pinnata (matoa) leaves extract as bioreductor. J. Phys. Conf. Ser. https://doi.org/10.1088/1742-6596/1428/1/012021 (2020).

    Article 

    Google Scholar
     

  • Sintubin, L. et al. Lactic acid micro organism as decreasing and capping agent for the quick and environment friendly manufacturing of silver nanoparticles. Appl. Microbiol. Biotechnol. 84(4), 741–749. https://doi.org/10.1007/s00253-009-2032-6 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Priya, R. S., Geetha, D. & Ramesh, P. S. Antioxidant exercise of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs–A comparative examine. Ecotoxicol. Environ. Saf. 134, 308–318. https://doi.org/10.1016/j.ecoenv.2015.07.037 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ndikau, M., Noah, N. M., Andala, D. M. & Masika, E. Inexperienced synthesis and characterization of silver nanoparticles utilizing Citrullus lanatus fruit rind extract. Int. J. Environ. Anal. Chem. https://doi.org/10.1155/2017/8108504 (2017).

    Article 

    Google Scholar
     

  • Elumalai, D., Hemavathi, M., Deepaa, C. V. & Kaleena, P. Ok. Analysis of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal exercise in opposition to malaria, dengue and filariasis vectors. Parasite Epidemiol. Management. 2, 15–26. https://doi.org/10.1016/j.parepi.2017.09.001 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kokila, T., Ramesh, P. S. & Geetha, D. Biosynthesis of AgNPs utilizing Carica Papaya peel extract and analysis of its antioxidant and antimicrobial actions. Ecotoxicol. Environ. Saf. 134, 467–473. https://doi.org/10.1016/j.ecoenv.2016.03.021 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chandraker, S. Ok. et al. Cytotoxic, antimitotic, DNA binding, photocatalytic, H2O2 sensing, and antioxidant properties of biofabricated silver nanoparticles utilizing leaf extract of Bryophyllum pinnatum (Lam.) Oken. Entrance. Mol. Biosci. 465, 1. https://doi.org/10.3389/fmolb.2020.593040 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Nayak, D. et al. Biologically synthesised silver nanoparticles from three numerous household of plant extracts and their anticancer exercise in opposition to epidermoid A431 carcinoma. J. Colloid Interface Sci. 457, 329–338. https://doi.org/10.1016/j.jcis.2015.07.012 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Netala, V. R. et al. Biogenesis of silver nanoparticles utilizing leaf extract of Indigofera hirsuta L. and their potential biomedical purposes (3-in-1 system). Artif Cells Nanomed Biotechnol. 46(1), 1138–1148. https://doi.org/10.1080/21691401.2018.1446967 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Patel, P. R. et al. In-vitro anticancer exercise of Rubia cordifolia in opposition to Hela and Hep-2 cell strains. Phytomedicine 2, 44–46 (2010).

    CAS 

    Google Scholar
     

  • Adwankar, M. Ok. & Chitnis, M. P. In vivo anti-Most cancers exercise of RC-18. Chemotherapy 28, 291–293. https://doi.org/10.1159/000238092 (1982).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tripathi, Y. B. & Shukla, S. D. Rubia cordifolia extract inhibits cell proliferation in A-431 cells. Phytotherapy Analysis: Phytother. Res. 12(6), 454–456. https://doi.org/10.1002/(SICI)1099-1573(199809)12:6percent3c454::AID-PTR331percent3e3.0.CO;2-N (1998).

    CAS 
    Article 

    Google Scholar
     

  • Adwankar, M. Ok., Chitnis, M. P., Khandalekar, D. D. & Bhadsavale, C. G. Anti-cancer exercise of the extracts of Rubia cordifolia Linn. (NSC b668893). Indian J. Exp. Biol. 18(102), 1 (1980).


    Google Scholar
     

  • Topală, T., Bodoki, A., Oprean, L. & Oprean, R. Experimental methods employed within the examine of metallic complexes-DNA–interactions. Exp. Tech. 62(6), 1 (2014).


    Google Scholar
     

  • Rahban, M., Divsalar, A., Saboury, A. A. & Golestani, A. Nanotoxicity and spectroscopy research of silver nanoparticle: calf thymus DNA and K562 as targets. J. Phys. Chem. C 114, 5798–5803. https://doi.org/10.1021/jp910656g (2010).

    CAS 
    Article 

    Google Scholar
     

  • Pramanik, S. et al. Unraveling the interplay of silver nanoparticles with mammalian and bacterial DNA. J. Phys. Chem. 120(24), 5313–5324. https://doi.org/10.1021/acs.jpcb.6b01586 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Ribeiro, A. P. C. et al. Analysis of cell toxicity and DNA and protein binding of inexperienced synthesized silver nanoparticles. Biomed. Pharmacother. 101, 137–144. https://doi.org/10.1016/j.biopha.2018.02.069 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bocate, Ok. P. et al. Antifungal exercise of silver nanoparticles and simvastatin in opposition to toxigenic species of Aspergillus. Int. J. Meals Microbiol. 291, 79–86. https://doi.org/10.1016/j.ijfoodmicro.2018.11.012 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ravi, L. & Kannabiran, Ok. Antifungal potential of inexperienced synthesized silver nanoparticles (AgNPS) from the stem bark extract of Kigelia pinnata. Res. J. Pharm. Technol. 14(4), 1842–1846 (2021).

    Article 

    Google Scholar
     

  • Sowmiya, Ok. et al. Inexperienced synthesis of silver nanoparticles utilizing aqueous rhizome extract of Corallocarpus Epigaeus for biomedical purposes. Appl. Sci. Converg. Technol. 30(2), 54–61. https://doi.org/10.5757/ASCT.2021.30.2.54 (2021).

    Article 

    Google Scholar
     

  • Kumar, D., Arora, S. & Danish, M. Plant primarily based synthesis of silver nanoparticles from Ougeinia oojeinensis leaves extract and their membrane stabilizing, antioxidant and antimicrobial actions. Mater. As we speak: Proc. 17, 313–320. https://doi.org/10.1016/j.matpr.2019.06.435 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Bakri, M. M., El-Naggar, M. A., Helmy, E. A., Ashoor, M. S. & Ghany, A. Efficacy of Juniperus procera constituents with silver nanoparticles in opposition to Aspergillus fumigatus and Fusarium chlamydosporum. BioNanoScience 10(1), 62–72 (2020).

    Article 

    Google Scholar
     

  • Khorrami, S., Zarepour, A. & Zarrabi, A. Inexperienced synthesis of silver nanoparticles at low temperature in a quick tempo with distinctive DPPH radical scavenging and selective cytotoxicity in opposition to MCF-7 and BT-20 tumor cell strains. Biotechnol. Rep. 24, e00393. https://doi.org/10.1016/j.btre.2019.e00393 (2019).

    Article 

    Google Scholar
     

  • Salari, S., Bahabadi, S. E., Samzadeh-Kermani, A. & Yosefzaei, F. In-vitro analysis of antioxidant and antibacterial potential of inexperienced synthesized silver nanoparticles utilizing Prosopis farcta fruit extract. Iran. J. Pharm. Res. 18(430), 1 (2019).


    Google Scholar
     

  • Hemlata Meena, P. R., Singh, A. P. & Tejavath, Ok. Ok. Biosynthesis of silver nanoparticles utilizing Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative exercise in opposition to most cancers cell strains. ACS Omega 5, 5520–5528 (2020).

    Article 

    Google Scholar
     

  • Vorobyova, V., Vasyliev, G. & Skiba, M. Eco-friendly, “inexperienced” synthesis of silver nanoparticles with the black currant pomace extract and its antibacterial, electrochemical, and antioxidant exercise. Appl. Nanosci. 10, 4523–4534. https://doi.org/10.1007/s13204-020-01369-z (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Rasheed, T., Bilal, M., Iqbal, H. M. & Li, C. Inexperienced biosynthesis of silver nanoparticles utilizing leaves extract of Artemisia vulgaris and their potential biomedical purposes. Colloids Surf. B 158, 408–415. https://doi.org/10.1016/j.colsurfb.2017.07.020 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Sowinska, M. et al. Molecular Antioxidant Properties and In Vitro Cell Toxicity of the p-Aminobenzoic Acid (PABA) Functionalized Peptide Dendrimers. Biomolecules 9(89), 1. https://doi.org/10.3390/biom9030089 (2019).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments