Sonntag, Juli 31, 2022
StartMicrobiology Variations in lignin monomer contents and steady hydrogen isotope ratios in methoxy...

 Variations in lignin monomer contents and steady hydrogen isotope ratios in methoxy teams in the course of the biodegradation of backyard biomass


  • Liczbiński, P. & Borowski, S. Impact of hyperthermophilic pretreatment on methane and hydrogen manufacturing from backyard waste beneath mesophilic and thermophilic situations. Bioresour. Technol. 335, 125264. https://doi.org/10.1016/j.biortech.2021.125264 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kundariya, N. et al. A evaluation on built-in approaches for municipal stable waste for environmental and economical relevance: Monitoring instruments, applied sciences, and strategic improvements. Bioresour. Technol. 342, 125982. https://doi.org/10.1016/j.biortech.2021.125982 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Onwosi, C. O. et al. Composting expertise in waste stabilization: On the strategies, challenges and future prospects. J. Environ. Manag. 190, 140–157. https://doi.org/10.1016/j.jenvman.2016.12.051 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Wainaina, W. et al. Useful resource restoration and round financial system from natural stable waste utilizing cardio and anaerobic digestion applied sciences. Bioresour. Technol. 301, 122778. https://doi.org/10.1016/j.biortech.2020.122778 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Awasthi, M. Ok. et al. A crucial evaluation of natural manure biorefinery fashions towards sustainable round bioeconomy: Technological challenges, developments, improvements, and future views. Renew. Maintain. Power Rev. 111, 115–131. https://doi.org/10.1016/j.rser.2019.05.017 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Cheng, H. H. & Whang, L. M. Useful resource restoration from lignocellulosic wastes through organic applied sciences: Developments and prospects. Bioresour. Technol. 343, 126097. https://doi.org/10.1016/j.biortech.2021.126097 (2022).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lambertz, C., Ece, S., Fischer, R. & Commandeur, U. Progress and obstacles within the manufacturing and utility of recombinant lignin-degrading peroxidases. Bioengineered 7, 145–154. https://doi.org/10.1080/21655979.2016.1191705 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riyadi, F. A. et al. Enzymatic and genetic characterization of lignin depolymerization by Streptomyces sp. S6 remoted from a tropical surroundings. Sci. Rep. 10, 7813. https://doi.org/10.1038/s41598-020-64817-4 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanholme, R., Meester, B. D., Ralph, J. & Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 59, 230–239. https://doi.org/10.1016/j.copbio.2019.02.018 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Asina, F. et al. Biodegradation of lignin by fungi, micro organism and laccases. Bioresour. Technol. 220, 414–424. https://doi.org/10.1016/j.biortech.2016.124124 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Patil, V., Adhikari, S., Cross, P. & Jahromi, H. Progress within the solvent depolymerization of lignin. Renew. Maintain. Power Rev. 133, 110359. https://doi.org/10.1016/j.rser.2020.110359 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Chio, C., Sain, M. & Qin, W. Lignin utilization: A evaluation of lignin depolymerization from numerous facets. Renew. Maintain. Power Rev. 107, 232–249. https://doi.org/10.1016/j.rser.2019.03.008 (2019).

    CAS 
    Article 

    Google Scholar
     

  • de Gonzalo, G., Colpa, D. I., Habib, M. H. M. & Fraaije, M. W. Bacterial enzymes concerned in lignin degradation. J. Biotechnol. 236, 110–119. https://doi.org/10.1016/j.jbiotec.2016.08.011 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kamimura, N., Sakamoto, S., Mitsuda, N., Masai, E. & Kajita, S. Advances in microbial lignin degradation and its purposes. Curr. Opin. Biotechnol. 56, 179–186. https://doi.org/10.1016/j.copbio.2018.11.011 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Weng, C. H., Peng, X. W. & Han, Y. J. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis. Biotechnol. Biofuels 14, 84. https://doi.org/10.1186/s13068-021-01934-w (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falade, A. O. et al. Lignin peroxidase functionalities and potential purposes. Microbiology 6, e00394. https://doi.org/10.1002/mbo3.394 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Jia, L. L., Qin, Y. J., Wang, J. & Zhang, J. H. Lignin extracted by γ-valerolactone/water from corn stover improves cellulose enzymatic hydrolysis. Bioresour. Technol. 302, 122901. https://doi.org/10.1016/j.biortech.2020.122901 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Morya, R., Kumar, M. & Thakur, I. S. Bioconversion of syringyl lignin into malic acid by Burkholderia sp. ISTR5. Bioresour. Technol. 330, 124981. https://doi.org/10.1016/j.biortech.2021.124981 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • McRoberts, W. C., Keppler, F., Harper, D. B. & Hamilton, J. T. G. Seasonal modifications in chlorine and methoxyl content material of leaves of deciduous bushes and their influence on launch of chloromethane and methanol at elevated temperatures. Environ. Chem. 12, 426–437. https://doi.org/10.1071/EN14208 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Keppler, F., Kalin, R. M., Harper, D. B., McRoberts, W. C. & Hamilton, J. T. G. Carbon isotope anomaly within the main plant C1 pool and its world biogeochemical implications. Biogeosciences 1, 123–131. https://doi.org/10.5194/bgd-1-393-2004 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Keppler, F. et al. Steady hydrogen isotope ratios of lignin methoxyl teams as a paleoclimate proxy and constraint of the geographical origin of wooden. New Phytol. 176, 600–609. https://doi.org/10.1111/j.1469-8137.2007.02213.x (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Keppler, F. & Hamilton, J. T. G. Tracing the geographical origin of early potato tubers utilizing steady hydrogen isotope ratios of methoxyl teams. Isot. Environ. Well being Stud. 44, 337–347. https://doi.org/10.1080/10256010802507383 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Keppler, F. et al. Chloromethane launch from carbonaceous meteorite affords new perception into Mars lander findings. Sci. Rep. 4, 1–10. https://doi.org/10.1038/srep07010 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Greule, M., Rossmann, A., Schmidt, H. L., Mosandl, A. & Keppler, F. A steady isotope strategy to assessing water loss in vegetables and fruit throughout storage. J. Agric. Meals Chem. 63, 1974–1981. https://doi.org/10.1021/jf505192p (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Greule, M., Wieland, A. & Keppler, F. Measurements and purposes of δ2H values of wooden lignin methoxy teams for paleoclimatic research. Quat. Sci. Rev. 268, 107107. https://doi.org/10.1016/j.quascirev.2021.107107 (2021).

    Article 

    Google Scholar
     

  • Porter, T. J. et al. Canadian arctic Neogene temperatures reconstructed from hydrogen isotopes of lignin-methoxy teams from sub-fossil wooden. Paleoceanogr. Paleoclimatol. 37, e2021PA004345. https://doi.org/10.1029/2021PA004345 (2022).

    Article 

    Google Scholar
     

  • Feakins, S. J., Ellsworth, P. V. & Sternberg, L. D. S. L. Lignin methoxyl hydrogen isotope ratios in a coastal ecosystem. Geochim. Cosmochim. Acta 121, 54–66. https://doi.org/10.1016/j.gca.2013.07.012 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Anhäuser, T., Hook, B., Halfar, J., Greule, M. & Keppler, F. Earliest Eocene chilly interval and polar amplification—insights from δ2H values of lignin methoxyl teams of mummified wooden. Palaeogeogr. Palaeocl. 505, 326–336. https://doi.org/10.1016/j.palaeo.2018.05.049 (2018).

    Article 

    Google Scholar
     

  • Lu, Q. Q. et al. Tree-ring lignin proxies in Larix gmelinii forest rising in a permafrost space of northeastern China: Temporal variation and potential for local weather reconstructions. Ecol. Indic. 118, 106750. https://doi.org/10.1016/j.ecolind.2020.106750 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y. B. et al. Temperature sign recorded in δ2H and δ13C values of wooden lignin methoxyl teams from a permafrost forest in northeastern China. Sci. Whole Environ. 727, 138558. https://doi.org/10.1016/j.scitotenv.2020.138558 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Greule, M. et al. Improved speedy authentication of vanillin utilizing δ13C and δ2H values. Eur. Meals Res. Technol. 231, 933–941. https://doi.org/10.1007/s00217-010-1346-z (2010).

    CAS 
    Article 

    Google Scholar
     

  • van Leeuwen, Ok. A., Prenzler, P. D., Ryan, D., Paolini, M. & Camin, F. Differentiation of wood-derived vanillin from artificial vanillin in distillates utilizing gasoline chromatography/combustion/isotope ratio mass spectrometry for δ13C evaluation. Fast Commun. Mass Spectrom. 32, 311–318. https://doi.org/10.1002/rcm.8031 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Anhäuser, T. et al. Steady hydrogen and carbon isotope ratios of methoxyl teams throughout plant litter degradation. Isot. Environ. Well being S. 51, 143–154. https://doi.org/10.1080/10256016.2015.1013540 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Chauhan, P. S. Position of varied bacterial enzymes in full depolymerization of lignin: a evaluation. Biocatal. Agric. Biotechnol. 23, 101498. https://doi.org/10.1016/j.bcab.2020.101498 (2020).

    Article 

    Google Scholar
     

  • Yoon, C. S. & Ji, D. S. Results of in vitro degradation on the load loss and tensile properties of PLA/LPCL/HPCL mix fibers. Fiber. Polym. 6, 13–18. https://doi.org/10.1007/BF02875568 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Harman-Ware, A. E. et al. Quantitative evaluation of lignin monomers by a thioacidolysis technique tailor-made for higher-throughput evaluation. J. Biotechnol. 11, 1268–1273. https://doi.org/10.1002/biot.201600266 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Lapierre, C., Monties, B. & Rolando, C. Thioacidolysis of poplar lignins: identification of monomeric syringyl merchandise and characterization of guaiacyl–syringyl lignin fractions. Holzforschung 40, 113–118. https://doi.org/10.1515/hfsg.1986.40.2.113 (1986).

    CAS 
    Article 

    Google Scholar
     

  • Robinson, A. R. & Mansfield, S. D. Fast evaluation of poplar lignin monomer composition by a streamlined thioacidolysis process and near-infrared reflectance-based prediction modeling. Plant J. 58, 706–714. https://doi.org/10.1111/j.1365-313X.2009.03808.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wu, L. et al. Tricin-lignins: Incidence and quantitation of tricin in relation to phylogeny. Plant J. 88, 1045–1057. https://doi.org/10.1111/tpj.13315 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Greule, M., Rossmann, A., Hamilton, J. T. G. & Keppler, F. A speedy and exact technique for willpower of D/H ratios of plant methoxyl teams. Fast Commun. Mass Sp. 22, 3983–3988. https://doi.org/10.1002/rcm.3817 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Greule, M. et al. Three wooden isotopic reference supplies for δ2H and δ13C measurements of plant methoxy teams. Chem. Geol. 533, 119428. https://doi.org/10.1016/j.chemgeo.2019.119428 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Model, W. A. & Coplen, T. B. Steady isotope deltas: Tiny, but sturdy signatures in nature. Isot. Environ. Well being. Stud. 48, 393–409. https://doi.org/10.1080/10256016.2012.666977 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Cui, T. W. et al. Enhanced lignin biodegradation by consortium of white rot fungi: Microbial synergistic results and product mapping. Biotechnol. Biofuels. 14, 162. https://doi.org/10.1186/s13068-021-02011-y (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vipotnik, Z., Michelin, M. & Tavares, T. Ligninolytic enzymes manufacturing throughout polycyclic fragrant hydrocarbons degradation: Impact of soil pH, soil amendments and fungal co-cultivation. Biodegradation 32, 193–215. https://doi.org/10.1007/s10532-021-09933-2 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Guo, X. X., Liu, H. T. & Wu, S. B. Humic substances developed throughout natural waste composting: Formation mechanisms, structural properties, and agronomic features. Sci. Whole Environ. 662, 501–510. https://doi.org/10.1016/j.scitotenv.2019.01.137 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Marmann, A., Aly, A., Lin, W. H., Wang, B. G. & Proksch, P. Co-cultivation—A robust rising instrument for enhancing the chemical range of microorganisms. Mar. Medicine 12, 1043–1065. https://doi.org/10.3390/md12021043 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao, J. X. et al. Results of amino acids on the lignocellulose degradation by Aspergillus fumigatus Z5: Insights into efficiency, transcriptional, and proteomic profiles. Biotechnol. Biofuels 12, 4. https://doi.org/10.1186/s13068-018-1350-2 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, C. W. et al. Cloning, expression, and characterization of a recombinant esterase from cold-adapted Pseudomonas mandelii. Appl. Biochem. Biotechnol. 169, 29–40. https://doi.org/10.1007/s12010-012-9947-6 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Meehnian, H., Jana, A. Ok. & Jana, M. M. Pretreatment of cotton stalks by synergistic interplay of Daedalea flavida and Phlebia radiata in co-culture for enchancment in delignification and saccharification. Int. Biodeterior. Biodegrad. 117, 68–77. https://doi.org/10.1016/j.ibiod.2016.11.022 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, S. T., Xiao, J. L., Wang, G. & Chen, G. Enzymatic hydrolysis of lignin by ligninolytic enzymes and evaluation of the hydrolyzed lignin merchandise. Bioresour. Technol. 304, 122975. https://doi.org/10.1016/j.biortech.2020.122975 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Atiwesh, G., Parrish, C. C., Banoub, J. & Le, T. T. Lignin degradation by microorganisms: A evaluation. Biotechnol. Progr. 38, e3226. https://doi.org/10.1002/btpr.3226 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Chi, Y., Hatakka, A. & Maijala, P. Can co-culturing of two white-rot fungi improve lignin degradation and the manufacturing of lignin-degrading enzymes?. Int. Biodeterior. Biodegrad. 59, 32–39. https://doi.org/10.1016/j.ibiod.2006.06.025 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Andlar, M. et al. Lignocellulose degradation: An summary of fungi and fungal enzymes concerned in lignocellulose degradation. Eng. Life Sci. 18, 768–778. https://doi.org/10.1002/elsc.201800039 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bugg, T. D., Ahmad, M., Hardiman, E. M. & Singh, R. The rising function for micro organism in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22, 394–400. https://doi.org/10.1016/j.copbio.2010.10.009 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kumar, M. et al. Lignin valorization by bacterial genus Pseudomonas: State-of-the-art evaluation and prospects. Bioresour. Technol. 320, 124412. https://doi.org/10.1016/j.biortech.2020.124412 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Graf, N. Genetic engineering of Pseudomonas putida KT2440 for speedy and high-yield manufacturing of vanillin from ferulic acid. Appl. Microbiol. Biotechnol. 98, 137–149. https://doi.org/10.1007/s00253-013-5303-1 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Plaggenborg, R. et al. Potential of Rhodococcus strains for biotechnological vanillin manufacturing from ferulic acid and eugenol. Appl. Microbiol. Biotechnol. 72, 745–755. https://doi.org/10.1007/s00253-005-0302-5 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kasai, D., Masai, E., Miyauchi, Ok., Katayama, Y. & Fukuda, M. Characterization of the gallate dioxygenase gene: Three distinct ring cleavage dioxygenases are concerned in syringate degradation by Sphingomonas paucimobilis SYK-6. J. Bacteriol. 187, 5067–5074. https://doi.org/10.1128/JB.187.15.5067-5074.2005 (2005).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkatesagowda, B. & Dekker, R. F. H. Microbial demethylation of lignin: Proof of enzymes collaborating within the elimination of methyl/methoxyl teams. Enzyme. Microb. Technol. 147, 109780. https://doi.org/10.1016/j.enzmictec.2021.109780 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mathews, S. L., Grunden, A. M. & Pawlak, J. Degradation of lignocellulose and lignin by Paenibacillus glucanolyticus. Internat. Biodeterior. Biodegrad. 110, 79–86. https://doi.org/10.1016/j.ibiod.2016.02.012 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Peng, Y., Nicastro, Ok. H., Epps, T. H. & Wu, C. Methoxy teams lowered the estrogenic exercise of lignin-derivable replacements relative to bisphenol A and bisphenol F as studied by means of two in vitro assays. Meals Chem. 338, 127656. https://doi.org/10.1016/j.foodchem.2020.127656 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Caffall, Ok. H. & Mohnen, D. The construction, perform, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344, 1879–1900. https://doi.org/10.1016/j.carres.2009.05.021 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Das, S., Majumdar, B. & Saha, A. R. Biodegradation of plant pectin and hemicelluloses with three novel Bacillus pumilus strains and their mixed utility for high quality jute fibre manufacturing. Agric. Res. 4, 354–364. https://doi.org/10.1007/s40003-015-0188-0 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Elsner, M. Steady isotope fractionation to research pure transformation mechanisms of natural contaminants: Rules, prospects and limitations. J. Environ. Monit. 12, 2005–2031. https://doi.org/10.1039/c0em00277a (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cui, M. C., Zhang, W. B., Fang, J., Liang, Q. Q. & Liu, D. X. Carbon and hydrogen isotope fractionation throughout anaerobic biodegradation of quinoline and 3-methylquinolin. Appl. Microbiol. Biotechnol. 101, 6563–6572. https://doi.org/10.1007/s00253-017-8379-1 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fischer, A., Gehre, M., Breitfeld, J., Richnow, H. H. & Vogt, C. Carbon and hydrogen isotope fractionation of benzene throughout biodegradation beneath sulfate-reducing situations: A laboratory to discipline website strategy. Fast Commun. Mass Spectrom. 23, 2439–2447. https://doi.org/10.1002/rcm.4049 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lee, H. J., Feng, X. J., Mastalerz, M. & Feakins, S. J. Characterizing lignin: Combining lignin phenol, methoxy quantification, and twin steady carbon and hydrogen isotopic methods. Org. Geochem. 136, 103894. https://doi.org/10.1016/j.orggeochem.2019.07.003 (2019).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Who Is Life Coach

    Who Is Life Church

    Who Invented Life

    Recent Comments